Evaluation of anhydrohexitol nucleic acid, cyclohexenyl nucleic acid andd-altritol nucleic acid-modified 2′-O-methyl RNA mixmer antisense oligonucleotides for exon skipping in vitro

2016 ◽  
Vol 52 (92) ◽  
pp. 13467-13470 ◽  
Author(s):  
Bao T. Le ◽  
Suxiang Chen ◽  
Mikhail Abramov ◽  
Piet Herdewijn ◽  
Rakesh N. Veedu

We have investigated the potential of anhydrohexitol, cyclohexenyl and altritol nucleic acid-modified antisense oligos in exon skipping, and found that they efficiently inducedDmdexon 23 skipping.

2017 ◽  
Vol 9 ◽  
pp. 155-161 ◽  
Author(s):  
Bao T. Le ◽  
Abbie M. Adams ◽  
Susan Fletcher ◽  
Stephen D. Wilton ◽  
Rakesh N. Veedu

RSC Advances ◽  
2016 ◽  
Vol 6 (97) ◽  
pp. 95169-95172 ◽  
Author(s):  
Bao T. Le ◽  
Vyacheslav V. Filichev ◽  
Rakesh N. Veedu

We have investigated the applicability of twisted intercalating nucleic acids (TINA)-modified antisense oligonucleotides (AOs) in exon skipping. We found that TINA-modified AOs induced exon skipping.


2020 ◽  
Vol 21 (7) ◽  
pp. 2434
Author(s):  
Prithi Raguraman ◽  
Tao Wang ◽  
Lixia Ma ◽  
Per Trolle Jørgensen ◽  
Jesper Wengel ◽  
...  

Alpha-l-Locked nucleic acid (α-l-LNA) is a stereoisomeric analogue of locked nucleic acid (LNA), which possesses excellent biophysical properties and also exhibits high target binding affinity to complementary oligonucleotide sequences and resistance to nuclease degradations. Therefore, α-l-LNA nucleotides could be utilised to develop stable antisense oligonucleotides (AO), which can be truncated without compromising the integrity and efficacy of the AO. In this study, we explored the potential of α-l-LNA nucleotides-modified antisense oligonucleotides to modulate splicing by inducing Dmd exon-23 skipping in mdx mouse myoblasts in vitro. For this purpose, we have synthesised and systematically evaluated the efficacy of α-l-LNA-modified 2′-O-methyl phosphorothioate (2′-OMePS) AOs of three different sizes including 20mer, 18mer and 16mer AOs in parallel to fully-modified 2′-OMePS control AOs. Our results demonstrated that the 18mer and 16mer truncated AO variants showed slightly better exon-skipping efficacy when compared with the fully-23 modified 2′-OMePS control AOs, in addition to showing low cytotoxicity. As there was no previous report on using α-l-LNA-modified AOs in splice modulation, we firmly believe that this initial study could be beneficial to further explore and expand the scope of α-l-LNA-modified AO therapeutic molecules.


Author(s):  
Arthur Van Aerschot ◽  
Mark Vandermeeren ◽  
Johan Geysen ◽  
Walter Luyten ◽  
Marc Miller ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (86) ◽  
pp. 54542-54545 ◽  
Author(s):  
Bao T. Le ◽  
Mick Hornum ◽  
Pawan K. Sharma ◽  
Poul Nielsen ◽  
Rakesh N. Veedu

We investigated the potential of nucleobase-modified antisense oligonucleotides to induce exon-skipping, and found that 5-(phenyltriazol)-2′-deoxyuridine-modified antisense oligonucleotides induced efficient exon-skipping in vitro.


2021 ◽  
Vol 22 (7) ◽  
pp. 3479
Author(s):  
Jessica M. Cale ◽  
Kane Greer ◽  
Sue Fletcher ◽  
Steve D. Wilton

Marfan syndrome is one of the most common dominantly inherited connective tissue disorders, affecting 2–3 in 10,000 individuals, and is caused by one of over 2800 unique FBN1 mutations. Mutations in FBN1 result in reduced fibrillin-1 expression, or the production of two different fibrillin-1 monomers unable to interact to form functional microfibrils. Here, we describe in vitro evaluation of antisense oligonucleotides designed to mediate exclusion of FBN1 exon 52 during pre-mRNA splicing to restore monomer homology. Antisense oligonucleotide sequences were screened in healthy control fibroblasts. The most effective sequence was synthesised as a phosphorodiamidate morpholino oligomer, a chemistry shown to be safe and effective clinically. We show that exon 52 can be excluded in up to 100% of FBN1 transcripts in healthy control fibroblasts transfected with PMO52. Immunofluorescent staining revealed the loss of fibrillin 1 fibres with ~50% skipping and the subsequent re-appearance of fibres with >80% skipping. However, the effect of exon skipping on the function of the induced fibrillin-1 isoform remains to be explored. Therefore, these findings demonstrate proof-of-concept that exclusion of an exon from FBN1 pre-mRNA can result in internally truncated but identical monomers capable of forming fibres and lay a foundation for further investigation to determine the effect of exon skipping on fibrillin-1 function.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Tsuyoshi Yamamoto ◽  
Hidenori Yasuhara ◽  
Fumito Wada ◽  
Mariko Harada-Shiba ◽  
Takeshi Imanishi ◽  
...  

The duplex stability with target mRNA and the gene silencing potential of a novel bridged nucleic acid analogue are described. The analogue,2′,4′-BNANCantisense oligonucleotides (AONs) ranging from 10- to 20-nt-long, targeted apolipoprotein B.2′,4′-BNANCwas directly compared to its conventional bridged (or locked) nucleic acid (2′,4′-BNA/LNA)-based counterparts. Melting temperatures of duplexes formed between2′,4′-BNANC-based antisense oligonucleotides and the target mRNA surpassed those of 2′,4′-BNA/LNA-based counterparts at all lengths. Anin vitrotransfection study revealed that when compared to the identical length2′,4′-BNA/LNA-based counterpart, the corresponding2′,4′-BNANC-based antisense oligonucleotide showed significantly stronger inhibitory activity. This inhibitory activity was more pronounced in shorter (13-, 14-, and 16-mer) oligonucleotides. On the other hand, the 2′,4′-BNANC-based 20-mer AON exhibited the highest affinity but the worstIC50value, indicating that very high affinity may undermine antisense potency. These results suggest that the potency of AONs requires a balance between reward term and penalty term. Balance of these two parameters would depend on affinity, length, and the specific chemistry of the AON, and fine-tuning of this balance could lead to improved potency. We demonstrate that2′,4′-BNANCmay be a better alternative to conventional2′,4′-BNA/LNA, even for “short” antisense oligonucleotides, which are attractive in terms of drug-likeness and cost-effective bulk production.


Sign in / Sign up

Export Citation Format

Share Document