In situ microscopic studies on the structures and phase behaviors of SF/PEG films using solid-state NMR and Raman imaging

2016 ◽  
Vol 18 (24) ◽  
pp. 16353-16360 ◽  
Author(s):  
Congheng Chen ◽  
Ting Yao ◽  
Sidong Tu ◽  
Weijie Xu ◽  
Yi Han ◽  
...  

SF was incompatible with PEG in some extent, and the phase separation took place in their blend film. The conformation of SF in the interface between SF and PEG was changed to the β-sheet, while that in the protein-rich domain remained in the random coil and/or helix conformation.

2019 ◽  
Vol 26 (5) ◽  
pp. 386-390
Author(s):  
Dhandayuthapani Sambasivam ◽  
Senthilkumar Sivanesan ◽  
Sayeeda Sultana ◽  
Jayakumar Rajadas

Background: The structural transition of aggregating Abeta peptides is the key event in the progression of Alzheimer’s Disease (AD). Objective: In the present work, the structural modifications of toxic Aβ25-35 and the scrambled Aβ35-25 were studied in Trifluoroethanol (TFE) and in aqueous SDS micelles. Methods: Using CD spectroscopic investigations, the conformational transition of Aβ25-35 and Aβ35-25 peptides were determined in different membrane mimicking environments such as TFE and SDS. An interval scan CD of the peptides on evaporation of TFE was performed. TFE titrations were carried out to investigate the intrinsic ability of the structural conformations of peptides. Results: We show by spectroscopic evidence that Aβ25-35 prefers beta sheet structures upon increasing TFE concentrations. On the other hand, the non-toxic scrambled Aβ35-25 peptide only undergoes a transition from random coil to α-helix conformation with increasing TFE. In the interval scan studies, Aβ25-35 did not show any structural transitions, whereas Aβ35-25 showed transition from α-helix to β-sheet conformation. In membrane simulating aqueous SDS micelles, Aβ25-35 showed a transition from random coil to α-helix while Aβ35-25 underwent transition from random coil to β-sheet conformation. Conclusion: Overall, the current results seek new insights into the structural properties of amyloidogenic and the truncated sequence in membrane mimicking solvents.


2018 ◽  
Vol 54 (76) ◽  
pp. 10746-10749 ◽  
Author(s):  
B. Addison ◽  
D. Onofrei ◽  
D. Stengel ◽  
B. Blass ◽  
B. Brenneman ◽  
...  

Solid-State NMR results on 13C-Ala/Ser and 13C-Val enriched Argiope argentata prey-wrapping silk show that native, freshly spun aciniform silk nanofibers are dominated by α-helical (∼50% total) and random-coil (∼35% total) secondary structures, with minor β-sheet nanocrystalline domains (∼15% total).


2021 ◽  
pp. 2005878
Author(s):  
Xiangsi Liu ◽  
Ziteng Liang ◽  
Yuxuan Xiang ◽  
Min Lin ◽  
Qi Li ◽  
...  

1989 ◽  
Vol 171 ◽  
Author(s):  
Dale W. Schaefer ◽  
James E. Mark ◽  
David Mccarthy ◽  
Li Jian ◽  
C. -C. Sun ◽  
...  

ABSTRACTThe structure of several classes of silica/siloxane molecular composites is investigated using small-angle x-ray and neutron scattering. These filled elastomers can be prepared through different synthethic protocols leading to a range of fillers including particulates with both rough and smooth surfaces, particulates with dispersed interfaces, and polymeric networks. We also find examples of bicontinuous filler phases that we attribute to phase separation via spinodal decomposition. In-situ kinetic studies of particulate fillers show that the precipitate does not develop by conventional nucleation-and-growth. We see no evidence of growth by ripening whereby large particles grow by consumption of small particles. Rather, there appears to be a limiting size set by the elastomer network itself. Phase separation develops by continuous nucleation of particles and subsequent growth to the limiting size. We also briefly report studies of polymer-toughened glasses. In this case, we find no obvious correlation between organic content and structure.


2011 ◽  
Vol 236-238 ◽  
pp. 2221-2224
Author(s):  
Kui Hua Zhang ◽  
Xiu Mei Mo

In order to improve water-resistant ability silk fibroin (SF) and SF/P(LLA-CL) blended nanofibrous scaffolds for tissue engineering applications, methanol vapor were used to treat electrospun nanofibers. SEM indicated SF and SF/ P(LLA-CL) scaffolds maintained nanofibrous structure after treated with methanol vapor and possessed good water-resistant ability. Characterization of 13C NMR clarified methanol vapor induced SF conformation from random coil or α- helix to β-sheet. Moreover, treated SF/ P (LLA-CL) nanofibrous scaffolds still kept good mechanical properties. Methanol vapor could be ideal method to treat SF and SF/ P(LLA-CL) nanofibrous scaffolds for biomedical applications.


2013 ◽  
Vol 721 ◽  
pp. 274-277
Author(s):  
Li Li Ji ◽  
Qiao Ling Li ◽  
Zeng Hu Yang ◽  
Wei Jing Hu ◽  
Kui Hua Zhang

Vitamin E d-alpha-tocopheryl polyethylene glycol 1000 succinate (VE TPGS) loaded silk fibroin (SF)/ hyaluronic acid (HA) nanofibrous scaffolds were fabricated by means of electrospinning to biomimic the natural extracellular matrix. Scanning electronic microscopy (SEM) results indicated that electrospun VE TPGS loaded SF/HA nanofibers were ribbon-shaped, the width of nanofibers decreased slightly with the addition of VE TPGS to SF/HA blended solutions. Fourier transform infrared (FTIR) spectroscopy and Wide-angle X-ray diffraction (WAXD) curves revealed that VE TPGS did not induce SF conformation from random coil to β-sheet. SF conformation converted from random coil to β-sheet after being treated with 75% ethanol vapor. In vitro release studies confirmed VE TPGS had no obvious burst release and present good release behavior.


Sign in / Sign up

Export Citation Format

Share Document