Efficient Fenton-Like Catalysis Boosting the Antifouling Performance of the Heterostructured Membranes Fabricated via Vapor-Induced Phase Separation and In Situ Mineralization

Author(s):  
Hao Yang ◽  
Baikang Zhu ◽  
Lijing Zhu ◽  
Zhixiang Zeng ◽  
Gang Wang ◽  
...  
Keyword(s):  
2016 ◽  
Vol 18 (24) ◽  
pp. 16353-16360 ◽  
Author(s):  
Congheng Chen ◽  
Ting Yao ◽  
Sidong Tu ◽  
Weijie Xu ◽  
Yi Han ◽  
...  

SF was incompatible with PEG in some extent, and the phase separation took place in their blend film. The conformation of SF in the interface between SF and PEG was changed to the β-sheet, while that in the protein-rich domain remained in the random coil and/or helix conformation.


Polymer ◽  
1993 ◽  
Vol 34 (18) ◽  
pp. 3960-3961 ◽  
Author(s):  
Dong Pu Fang ◽  
C.C. Riccardi ◽  
R.J.J. Williams

1989 ◽  
Vol 171 ◽  
Author(s):  
Dale W. Schaefer ◽  
James E. Mark ◽  
David Mccarthy ◽  
Li Jian ◽  
C. -C. Sun ◽  
...  

ABSTRACTThe structure of several classes of silica/siloxane molecular composites is investigated using small-angle x-ray and neutron scattering. These filled elastomers can be prepared through different synthethic protocols leading to a range of fillers including particulates with both rough and smooth surfaces, particulates with dispersed interfaces, and polymeric networks. We also find examples of bicontinuous filler phases that we attribute to phase separation via spinodal decomposition. In-situ kinetic studies of particulate fillers show that the precipitate does not develop by conventional nucleation-and-growth. We see no evidence of growth by ripening whereby large particles grow by consumption of small particles. Rather, there appears to be a limiting size set by the elastomer network itself. Phase separation develops by continuous nucleation of particles and subsequent growth to the limiting size. We also briefly report studies of polymer-toughened glasses. In this case, we find no obvious correlation between organic content and structure.


2018 ◽  
Vol 18 (12) ◽  
pp. 7496-7503 ◽  
Author(s):  
Swann Gay ◽  
Brice Calvignac ◽  
Landry Ouanssi Kamtcheu ◽  
Thomas Beuvier ◽  
Elodie Boller ◽  
...  

2017 ◽  
Vol 17 (12) ◽  
pp. 6372-6381 ◽  
Author(s):  
Anton S. Tremsin ◽  
Didier Perrodin ◽  
Adrian S. Losko ◽  
Sven C. Vogel ◽  
Takenao Shinohara ◽  
...  

2014 ◽  
Vol 1645 ◽  
Author(s):  
Romain VAUCHY ◽  
Renaud.C. BELIN ◽  
Anne-Charlotte ROBISSON ◽  
Fiqiri HODAJ

ABSTRACTUranium-plutonium mixed oxides incorporating high amounts of plutonium are considered for future nuclear reactors. For plutonium content higher than 20%, a phase separation occurs, depending on the temperature and on the oxygen stoichiometry. This phase separation phenomenon is still not precisely described, especially at high plutonium content. Here, using an original in situ fast X-ray diffraction device dedicated to radioactive materials, we evidenced a phase separation occurring during rapid cooling from 1773 K to room temperature at the rate of 0.05 and 2 K per second for a (U0.55Pu0.45)O2-x compound under a reducing atmosphere. The results show that the cooling rate does not impact the lattice parameters of the obtained phases at room temperature but their fraction. In addition to their obvious fundamental interest, these results are of utmost importance in the prospect of using uranium-plutonium mixed oxides with high plutonium content as nuclear fuels.


Sign in / Sign up

Export Citation Format

Share Document