scholarly journals Design of Li1+2xZn1−xPS4, a new lithium ion conductor

2016 ◽  
Vol 9 (10) ◽  
pp. 3272-3278 ◽  
Author(s):  
William D. Richards ◽  
Yan Wang ◽  
Lincoln J. Miara ◽  
Jae Chul Kim ◽  
Gerbrand Ceder

Structural screening and in silico optimization yields a new Li-ion conductor with a bcc anion framework and high conductivity.

2018 ◽  
Vol 6 (45) ◽  
pp. 22478-22482 ◽  
Author(s):  
Jaegyeom Kim ◽  
Juhyun Kim ◽  
Maxim Avdeev ◽  
Hoseop Yun ◽  
Seung-Joo Kim

A new Li-ion conducting oxide, LiTa2PO8 with a novel three-dimensional framework structure was synthesized and characterized.


Soft Matter ◽  
2018 ◽  
Vol 14 (30) ◽  
pp. 6313-6319 ◽  
Author(s):  
Yang Yu ◽  
Fei Lu ◽  
Na Sun ◽  
Aoli Wu ◽  
Wei Pan ◽  
...  

A novel single Li-ion conductor based on poly(ionic liquid)s provides Li+-rich transport channels for lithium batteries.


Nanoscale ◽  
2015 ◽  
Vol 7 (19) ◽  
pp. 8758-8765 ◽  
Author(s):  
Liang Peng ◽  
Huijuan Zhang ◽  
Yuanjuan Bai ◽  
Yan Zhang ◽  
Yu Wang

A novel peapod-like TiO2–C array with high conductivity architecture is designed and fabricated on a Ti-substrate for application in high-performance Li-ion batteries.


RSC Advances ◽  
2020 ◽  
Vol 10 (41) ◽  
pp. 24533-24541
Author(s):  
Huiling Chen ◽  
Yuehua Wen ◽  
Yue Wang ◽  
Songtong Zhang ◽  
Pengcheng Zhao ◽  
...  

For high-voltage cycling of lithium-ion batteries, a Li-ion conductor layer, P(VDF-HFP)/LiTFSI with high electrochemical stability has been coated on the surfaces of as-formed LiCoO2 cathodes by a solution casting technique at low temperature.


2010 ◽  
Vol 445 ◽  
pp. 229-232
Author(s):  
Itta Komiya ◽  
Keisuke Nakao ◽  
Kiyofumi Yamagiwa ◽  
Jun Kuwano

The compositions La0.56Li0.33TiO2.95F0.05•xLiF (x=0-025) were prepared by addition of LiF to the disordered form of the well-known Li ion conductor La0.56Li0.33TiO3. Although the total conductivities improved, there was no change in the bulk conductivity with LiF addition. No reflections due to LiF were observed in their XRD patterns, and the profiles and the chemical shifts of their 19F MAS-NMR resonances were almost the same as those of LiF. The results indicate that no substitution of F takes place, and that the added LiF acts simply as a sintering assistant agent.


2017 ◽  
Vol 36 (1) ◽  
pp. 37-52
Author(s):  
Mohammad Illbeigi ◽  
Alireza Fazlali ◽  
Mahdi Kazazi ◽  
Amir hossein Mohammadi ◽  
◽  
...  

2018 ◽  
pp. 104-110
Author(s):  
I. A. Borovoy ◽  
O. V. Danishevskiy ◽  
A. V. Parfenov

The article substantiates the necessity of organizing the control system of modern lithium-ion batteries. Passive and active methods of cell balancing are described. The method of increase of efficiency of modes of accumulation of electric energy by means of the special electronic control device (the intellectual controller) and its further use for power supply of the functional equipment is considered. The structure of the intelligent controller as a part of the autonomous power supply system with the description of its main functional units and purpose is presented. Practical results of application in the intellectual controller of original adaptive control algorithms defining modes of operation of lithium-ion drives depending on various environmental conditions are resulted. The results of the analysis obtained by the results of experimental operation of the battery system, reflecting the qualitative and quantitative advantages of the proposed method.


2021 ◽  
Vol 13 (10) ◽  
pp. 5752
Author(s):  
Reza Sabzehgar ◽  
Diba Zia Amirhosseini ◽  
Saeed D. Manshadi ◽  
Poria Fajri

This work aims to minimize the cost of installing renewable energy resources (photovoltaic systems) as well as energy storage systems (batteries), in addition to the cost of operation over a period of 20 years, which will include the cost of operating the power grid and the charging and discharging of the batteries. To this end, we propose a long-term planning optimization and expansion framework for a smart distribution network. A second order cone programming (SOCP) algorithm is utilized in this work to model the power flow equations. The minimization is computed in accordance to the years (y), seasons (s), days of the week (d), time of the day (t), and different scenarios based on the usage of energy and its production (c). An IEEE 33-bus balanced distribution test bench is utilized to evaluate the performance, effectiveness, and reliability of the proposed optimization and forecasting model. The numerical studies are conducted on two of the highest performing batteries in the current market, i.e., Lithium-ion (Li-ion) and redox flow batteries (RFBs). In addition, the pros and cons of distributed Li-ion batteries are compared with centralized RFBs. The results are presented to showcase the economic profits of utilizing these battery technologies.


2021 ◽  
Vol 86 (3) ◽  
Author(s):  
Jeffery M. Allen ◽  
Justin Chang ◽  
Francois L. E. Usseglio-Viretta ◽  
Peter Graf ◽  
Kandler Smith

AbstractBattery performance is strongly correlated with electrode microstructure. Electrode materials for lithium-ion batteries have complex microstructure geometries that require millions of degrees of freedom to solve the electrochemical system at the microstructure scale. A fast-iterative solver with an appropriate preconditioner is then required to simulate large representative volume in a reasonable time. In this work, a finite element electrochemical model is developed to resolve the concentration and potential within the electrode active materials and the electrolyte domains at the microstructure scale, with an emphasis on numerical stability and scaling performances. The block Gauss-Seidel (BGS) numerical method is implemented because the system of equations within the electrodes is coupled only through the nonlinear Butler–Volmer equation, which governs the electrochemical reaction at the interface between the domains. The best solution strategy found in this work consists of splitting the system into two blocks—one for the concentration and one for the potential field—and then performing block generalized minimal residual preconditioned with algebraic multigrid, using the FEniCS and the Portable, Extensible Toolkit for Scientific Computation libraries. Significant improvements in terms of time to solution (six times faster) and memory usage (halving) are achieved compared with the MUltifrontal Massively Parallel sparse direct Solver. Additionally, BGS experiences decent strong parallel scaling within the electrode domains. Last, the system of equations is modified to specifically address numerical instability induced by electrolyte depletion, which is particularly valuable for simulating fast-charge scenarios relevant for automotive application.


Sign in / Sign up

Export Citation Format

Share Document