scholarly journals Numerical analysis of Pickering emulsion stability: insights from ABMD simulations

2016 ◽  
Vol 191 ◽  
pp. 287-304 ◽  
Author(s):  
François Sicard ◽  
Alberto Striolo

The issue of the stability of Pickering emulsions is tackled at a mesoscopic level using dissipative particle dynamics simulations within the Adiabatic Biased Molecular Dynamics framework. We consider the early stage of the coalescence process between two spherical water droplets in a decane solvent. The droplets are stabilized by Janus nanoparticles of different shapes (spherical and ellipsoidal) with different three-phase contact angles. Given a sufficiently dense layer of particles on the droplets, we show that the stabilization mechanism strongly depends on the collision speed. This is consistent with a coalescence mechanism governed by the rheology of the interfacial region. When the system is forced to coalesce sufficiently slowly, we investigate at a mesoscopic level how the ability of the nanoparticles to stabilize Pickering emulsions is discriminated by nanoparticle mobility and the associated caging effect. These properties are both related to the interparticle interaction and the hydrodynamic resistance in the liquid film between the approaching interfaces.

Nanoscale ◽  
2017 ◽  
Vol 9 (25) ◽  
pp. 8567-8572 ◽  
Author(s):  
François Sicard ◽  
Alberto Striolo

The buckling mechanism in droplets stabilized by solid particles (armored droplets) is tackled at a mesoscopic level using dissipative particle dynamics simulations.


2021 ◽  
Author(s):  
Nuno F. B. Oliveira ◽  
Filipe E. P. Rodrigues ◽  
João N. M. Vitorino ◽  
Rui J.S. Loureiro ◽  
Patrícia FN Faísca ◽  
...  

The D76N mutant of the beta-2-microgobulin protein is a biologically motivated model system to study protein aggregation. There is strong experimental evidence, supported by molecular simulations, that D76N populates a highly dynamic conformation (which we originally named I2) that exposes aggregation-prone patches as a result of the detachment of the two terminal regions. Here, we use Molecular Dynamics simulations to study the stability of an ensemble of dimers of I2 generated via protein-protein docking. MM-PBSA calculations indicate that within the ensemble of investigated dimers the major contribution to interface stabilization at physiological pH comes from hydrophobic interactions between apolar residues. Our structural analysis also reveals that the interfacial region associated with the most stable binding modes are particularly rich in residues pertaining to both the N- and C-terminus, as well residues from the BC- and DE-loops. On the other hand, the less stable interfaces are stabilized by intermolecular interactions involving residues from the CD- and EF-loops. By focusing on the most stable binding modes, we used a simple geometric rule to propagate the corresponding dimer interfaces. We found that, in the absence of any kind of structural rearrangement occurring at an early stage of the oligomerization pathway, some interfaces drive a self-limited growth process, while others can be propagated indefinitely allowing the formation of long, polymerized chains. In particular, the interfacial region of the most stable binding mode reported here falls in the class of self-limited growth.


2011 ◽  
Vol 2 ◽  
pp. 152-161 ◽  
Author(s):  
Hans J Ensikat ◽  
Petra Ditsche-Kuru ◽  
Christoph Neinhuis ◽  
Wilhelm Barthlott

Lotus leaves have become an icon for superhydrophobicity and self-cleaning surfaces, and have led to the concept of the ‘Lotus effect’. Although many other plants have superhydrophobic surfaces with almost similar contact angles, the lotus shows better stability and perfection of its water repellency. Here, we compare the relevant properties such as the micro- and nano-structure, the chemical composition of the waxes and the mechanical properties of lotus with its competitors. It soon becomes obvious that the upper epidermis of the lotus leaf has developed some unrivaled optimizations. The extraordinary shape and the density of the papillae are the basis for the extremely reduced contact area between surface and water drops. The exceptional dense layer of very small epicuticular wax tubules is a result of their unique chemical composition. The mechanical robustness of the papillae and the wax tubules reduce damage and are the basis for the perfection and durability of the water repellency. A reason for the optimization, particularly of the upper side of the lotus leaf, can be deduced from the fact that the stomata are located in the upper epidermis. Here, the impact of rain and contamination is higher than on the lower epidermis. The lotus plant has successfully developed an excellent protection for this delicate epistomatic surface of its leaves.


2011 ◽  
Vol 50 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Justin R. Spaeth ◽  
Todd Dale ◽  
Ioannis G. Kevrekidis ◽  
Athanassios Z. Panagiotopoulos

Soft Matter ◽  
2017 ◽  
Vol 13 (36) ◽  
pp. 6178-6188 ◽  
Author(s):  
Haina Tan ◽  
Chunyang Yu ◽  
Zhongyuan Lu ◽  
Yongfeng Zhou ◽  
Deyue Yan

This work discloses for the first time the self-assembly phase diagrams of amphiphilic hyperbranched multiarm copolymers in various solvents by dissipative particle dynamics simulations.


RSC Advances ◽  
2017 ◽  
Vol 7 (66) ◽  
pp. 41787-41787
Author(s):  
Yue Ma ◽  
Yuxiang Wang ◽  
Xuejian Deng ◽  
Guanggang Zhou ◽  
Shah Khalid ◽  
...  

Correction for ‘Dissipative particle dynamics and molecular dynamics simulations on mesoscale structure and proton conduction in a SPEEK/PVDF-g-PSSA membrane’ by Yue Ma et al., RSC Adv., 2017, 7, 39676–39684.


RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 39676-39684 ◽  
Author(s):  
Yue Ma ◽  
Yuxiang Wang ◽  
Xuejian Deng ◽  
Guanggang Zhou ◽  
Sha Khalid ◽  
...  

The blend morphologies evolve from disordered small particles to a regular PVDF cluster network, which were connected by SPEEK cylindrical channels.


Sign in / Sign up

Export Citation Format

Share Document