Downstream integration of microalgae harvesting and cell disruption by means of cationic surfactant-decorated Fe3O4 nanoparticles

2016 ◽  
Vol 18 (14) ◽  
pp. 3981-3989 ◽  
Author(s):  
Jung Yoon Seo ◽  
Ramasamy Praveenkumar ◽  
Bohwa Kim ◽  
Jeong-Cheol Seo ◽  
Ji-Yeon Park ◽  
...  

The functionalization of cationic surfactants on Fe3O4 nanoparticles serves two roles at the same time: microalgae harvesting and cell disruption for lipid extraction.

2014 ◽  
Vol 70 (2) ◽  
pp. 315-320 ◽  
Author(s):  
Riamburgo Gomes de Carvalho Neto ◽  
José Gilmar da Silva do Nascimento ◽  
Mayara Carantino Costa ◽  
Alexandre Colzi Lopes ◽  
Eliezer Fares Abdala Neto ◽  
...  

Some species of microalgae have high productivity and lipid content, which makes them good candidates for biodiesel production. Biomass separation and cell disruption are important steps in biodiesel production from microalgae. In this work, we explored the fundamentals of electroflotation by alternating current (EFAC) with non-consumable electrodes to simultaneously harvest microalgae and disrupt cells from mixed microalgae obtained from waste stabilization ponds. The harvesting efficiency was evaluated using chlorophyll-a and turbidity, which reached removals of 99% and 95%, respectively, during a batch time of 140 min. Cell disruption was evaluated using lipid extraction, and the best results were achieved with a batch time of 140 min, which resulted in a 14% yield. Therefore, EFAC was shown to be an attractive potential technology for simultaneous microalgal harvesting and cell disruption.


Author(s):  
Ahasanul Karim ◽  
M. Amirul Islam ◽  
Zaied Bin Khalid ◽  
Che Ku Mohammad Faizal ◽  
Md. Maksudur Rahman Khan ◽  
...  

2017 ◽  
Vol 10 ◽  
pp. 841-849 ◽  
Author(s):  
Angel Dario Gonzalez-Delgado ◽  
Janet Bibiana Garcia Martinez ◽  
Yeimmy Yolima Peralta-Ruiz

Author(s):  
JOHN P. ZELINA ◽  
CHRISTOPHER K. NJUE ◽  
JAMES F. RUSLING ◽  
GEOFFREY N. KAMAU ◽  
MIRIAM MASILA ◽  
...  

Electronic absorption spectroscopy was used to measure the molecular association of copper phthalocyanine tetrasulfonate in micellar solutions, a microemulsion made with cationic surfactant, and homogeneous solvents. Analysis of absorbance versus concentration data using a multiple-aggregation model and non-linear regression analysis gave values of association constants, molar absorptivities and estimates of average aggregation number. Microemulsions and aqueous micellar solutions made with alkylammonium surfactants inhibited aggregation, probably because of interactions between the phthalocyanine sulfonate groups and the cationic surfactant head groups at interfacial surfaces. Similar aggregation behavior was observed previously in multiple-bilayer films of cationic surfactants. Water and aqueous solutions containing tetraethylammonium bromide or anionic SDS micelles provide environments facilitating extensive aggregation of Cu II PcTS 4−. The major species are dimers in water and acetonitrile/water, but the formation of higher aggregates is promoted by addition of SDS or TEAB. Aprotic organic solvents provide environments intermediate between these two extremes, giving relatively large aggregation numbers (i.e. five to seven) but smaller association constants than aqueous media not containing cationic surfactants.


2014 ◽  
Vol 6 ◽  
pp. 86-90 ◽  
Author(s):  
Dong-Yeon Kim ◽  
Ji-Yeon Park ◽  
Sun-A Choi ◽  
You-Kwan Oh ◽  
Il-Gyu Lee ◽  
...  

2017 ◽  
Vol 244 ◽  
pp. 1317-1328 ◽  
Author(s):  
Soo Youn Lee ◽  
Jun Muk Cho ◽  
Yong Keun Chang ◽  
You-Kwan Oh

Sign in / Sign up

Export Citation Format

Share Document