Protection effect of nicotinamide on cardiomyoblast hypoxia/re-oxygenation injury: study of cellular mitochondrial metabolism

2016 ◽  
Vol 12 (7) ◽  
pp. 2257-2264 ◽  
Author(s):  
He Wang ◽  
Xiaoping Liang ◽  
Guoan Luo ◽  
Mingyu Ding ◽  
Qionglin Liang

Nicotinamide exerts a protective effect on cardiomyoblasts against hypoxia/re-oxygenation-induced injury through reduction of reactive oxygen species generation via succinate dehydrogenase inhibition.

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1806
Author(s):  
Javier Frontiñán-Rubio ◽  
Yoana Rabanal-Ruiz ◽  
Mario Durán-Prado ◽  
Francisco Javier Alcain

Vascular brain pathology constitutes a common feature in neurodegenerative diseases that could underlie their development. Indeed, vascular dysfunction acts synergistically with neurodegenerative changes to exacerbate the cognitive impairment found in Alzheimer’s disease. Different injuries such as hypertension, high glucose, atherosclerosis associated with oxidized low-density lipoprotein or inflammation induce NADPH oxidase activation, overproduction of reactive oxygen species, and apoptosis in endothelial cells. Since it has been shown that pretreatment of cultured endothelial cells with the lipophilic antioxidant coenzyme Q10 (CoQ10) displays a protective effect against the deleterious injuries caused by different agents, this study explores the cytoprotective role of different CoQs homologues against Aβ25–35-induced damage and demonstrates that only pretreatment with CoQ10 protects endothelial brain cells from Aβ25–35-induced damage. Herein, we show that CoQ10 constitutes the most effective ubiquinone in preventing NADPH oxidase activity and reducing both reactive oxygen species generation and the increase in free cytosolic Ca2+ induced by Aβ25–35, ultimately preventing apoptosis and necrosis. The specific cytoprotective effect of CoQ with a side chain of 10 isoprenoid units could be explained by the fact that CoQ10 is the only ubiquinone that significantly reduces the entry of Aβ25–35 into the mitochondria.


The eff ect of the non-opiate analog of leu-enkephalin (peptide NALE: Phe – D – Ala – Gly – Phe – Leu – Arg) on the reactive oxygen species generation in the heart of albino rats in the early postnatal period was studied. Peptide NALE was administered intraperitoneally in the dose of 100 μ/kg daily from 2 to 6 days of life. Reactive oxygen species generation was assessed by chemiluminescence in the heart homogenates of 7-day-old animals. Decreasing of reactive oxygen species generation nearly by 30 % and an increasing in antioxidant system activity by the 20-27 %, compared with the control parameters, were found. The antioxidant eff ect of peptide NALE is associated with the presence of the amino acid Arg in the structure of the peptide. An analogue of NALE peptide, devoid of Arg (peptide Phe – D – Ala – Gly – Phe – Leu – Gly), had a signifi cant lower antioxidant eff ect. The NO-synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) in the dose 50 mg/kg, administered with NALE peptide, reduced the severity of the NALE antioxidant eff ect. The results of the study suggest that the pronounced antioxidant eff ect of NALE peptide in the heart of albino rats, at least in part, is due to the interaction with the nitric oxide system.


2014 ◽  
Vol 92 (11) ◽  
pp. 1119-1128 ◽  
Author(s):  
Christopher J. Hall ◽  
Leslie E. Sanderson ◽  
Kathryn E. Crosier ◽  
Philip S. Crosier

Sign in / Sign up

Export Citation Format

Share Document