The DNA target determines the dimerization partner selected by bHLHZ-like hybrid proteins AhRJun and ArntFos

2017 ◽  
Vol 13 (3) ◽  
pp. 476-488 ◽  
Author(s):  
Ichiro Inamoto ◽  
Gang Chen ◽  
Jumi A. Shin

The molecular basis of protein–partner selection and DNA binding of the basic helix–loop–helix (bHLH) and basic region-leucine zipper (bZIP) superfamilies of dimeric transcription factors is fundamental toward understanding gene regulation.

1992 ◽  
Vol 12 (2) ◽  
pp. 817-827 ◽  
Author(s):  
C Roman ◽  
A G Matera ◽  
C Cooper ◽  
S Artandi ◽  
S Blain ◽  
...  

Southwestern (DNA-protein) screening of a murine L-cell cDNA library by using a probe for the microE3 site in the immunoglobulin heavy-chain enhancer yielded a clone, mTFE3, which is a member of the subset of basic helix-loop-helix (BHLH) proteins that also contain a leucine zipper (ZIP). Since the individual contribution of these domains is not well understood for proteins which contain them both, mutational analyses were performed to assess the functional roles of the HLH and ZIP regions for DNA binding and multimerization. The HLH region is stringently required for DNA binding but not for multimerization. The ZIP region is not stringently required for binding or multimerization, but stabilizes both multimer formation and DNA binding. A high degree of conservation at both the amino acid and nucleotide levels between the human transcription factor TFE3 and mTFE3 suggests that mTFE3 is the murine homolog of human TFE3. By using fluorescent in situ hybridization, mTFE3 was mapped to mouse chromosome X in band A2, which is just below the centromere. We show that in addition to the immunoglobulin heavy-chain microE3 site, mTFE3 binds to transcriptional elements important for lymphoid-specific, muscle-specific, and ubiquitously expressed genes. Binding of mTFE3 to DNA induces DNA bending.


2012 ◽  
Vol 287 (33) ◽  
pp. 27510-27525 ◽  
Author(s):  
Jehad Shaikhali ◽  
Louise Norén ◽  
Juan de Dios Barajas-López ◽  
Vaibhav Srivastava ◽  
Janine König ◽  
...  

1990 ◽  
Vol 10 (9) ◽  
pp. 4961-4966 ◽  
Author(s):  
L J Penn ◽  
M W Brooks ◽  
E M Laufer ◽  
T D Littlewood ◽  
J P Morgenstern ◽  
...  

Amino acids 106 to 143 and 354 to 433 of the human c-myc protein (439 amino acids) were shown to be required for the protein to suppress c-myc gene transcription and were found to exactly overlap with those necessary for c-myc to cooperate with ras oncogenes in the transformation of rat embryo fibroblasts. The essential carboxyl-terminal region harbors structural motifs (a basic region, a helix-loop-helix motif, and a "leucine zipper"), which, in other proteins, can mediate dimerization and sequence-specific DNA binding.


2019 ◽  
Vol 48 (2) ◽  
pp. 934-948 ◽  
Author(s):  
Vivian Pogenberg ◽  
Josué Ballesteros-Álvarez ◽  
Romana Schober ◽  
Ingibjörg Sigvaldadóttir ◽  
Agnieszka Obarska-Kosinska ◽  
...  

Abstract Interrupted dimeric coiled coil segments are found in a broad range of proteins and generally confer selective functional properties such as binding to specific ligands. However, there is only one documented case of a basic-helix–loop–helix leucine zipper transcription factor—microphthalmia-associated transcription factor (MITF)—in which an insertion of a three-residue stammer serves as a determinant of conditional partner selectivity. To unravel the molecular principles of this selectivity, we have analyzed the high-resolution structures of stammer-containing MITF and an engineered stammer-less MITF variant, which comprises an uninterrupted symmetric coiled coil. Despite this fundamental difference, both MITF structures reveal identical flanking in-phase coiled coil arrangements, gained by helical over-winding and local asymmetry in wild-type MITF across the stammer region. These conserved structural properties allow the maintenance of a proper functional readout in terms of nuclear localization and binding to specific DNA-response motifs regardless of the presence of the stammer. By contrast, MITF heterodimer formation with other bHLH-Zip transcription factors is only permissive when both factors contain either the same type of inserted stammer or no insert. Our data illustrate a unique principle of conditional partner selectivity within the wide arsenal of transcription factors with specific partner-dependent functional readouts.


1993 ◽  
Vol 13 (8) ◽  
pp. 4505-4512 ◽  
Author(s):  
G Q Zhao ◽  
Q Zhao ◽  
X Zhou ◽  
M G Mattei ◽  
B de Crombrugghe

We have identified a new basic helix-loop-helix (BHLH) DNA-binding protein, designated TFEC, which is closely related to TFE3 and TFEB. The basic domain of TFEC is identical to the basic DNA-binding domain of TFE3 and TFEB, whereas the helix-loop-helix motif of TFEC shows 88 and 85% identity with the same domains in TFE3 and TFEB, respectively. Like the other two proteins, TFEC contains a leucine zipper motif, which has a lower degree of sequence identity with homologous domains in TFE3 and TFEB than does the BHLH segment. Little sequence identity exists outside these motifs. Unlike the two other proteins, TFEC does not contain an acidic domain, which for TFE3 mediates the ability to activate transcription. Like the in vitro translation product of TFE3, the in vitro-translated TFEC binds to the mu E3 DNA sequence of the immunoglobulin heavy-chain gene enhancer. In addition, the product of cotranslation of TFEC RNA and TFE3 RNA forms a heteromeric protein-DNA complex with mu E3 DNA. In contrast to TFE3, TFEC is unable to transactivate a reporter gene linked to a promoter containing tandem copies of the immunoglobulin mu E3 enhancer motif. Cotransfection of TFEC DNA and TFE3 DNA strongly inhibits the transactivation caused by TFE3. TFEC RNA is found in many tissues of adult rats, but the relative concentrations of TFEC and TFE3 RNAs vary considerably in these different tissues. No TFEC RNA was detectable in several cell lines, including fibroblasts, myoblasts, chondrosarcoma cells, and myeloma cells, indicating that TFEC is not ubiquitously expressed.


1990 ◽  
Vol 10 (9) ◽  
pp. 4961-4966
Author(s):  
L J Penn ◽  
M W Brooks ◽  
E M Laufer ◽  
T D Littlewood ◽  
J P Morgenstern ◽  
...  

Amino acids 106 to 143 and 354 to 433 of the human c-myc protein (439 amino acids) were shown to be required for the protein to suppress c-myc gene transcription and were found to exactly overlap with those necessary for c-myc to cooperate with ras oncogenes in the transformation of rat embryo fibroblasts. The essential carboxyl-terminal region harbors structural motifs (a basic region, a helix-loop-helix motif, and a "leucine zipper"), which, in other proteins, can mediate dimerization and sequence-specific DNA binding.


Sign in / Sign up

Export Citation Format

Share Document