Transparent superhydrophobic coatings from amphiphilic-fluorinated block copolymers synthesized by aqueous polymerization-induced self-assembly

2016 ◽  
Vol 7 (24) ◽  
pp. 3998-4003 ◽  
Author(s):  
Farid Ouhib ◽  
Ali Dirani ◽  
Abdelhafid Aqil ◽  
Karine Glinel ◽  
Bernard Nysten ◽  
...  

Preparation of transparent and superhydrophobic coatings by co-deposition of an aqueous solution of an amphiphilic fluorinated block copolymer with silica was developed.

2021 ◽  
Author(s):  
Yidan Cheng ◽  
Takeshi Wakiya ◽  
Shinsuke Inagi ◽  
Toshikazu Takata ◽  
Ikuyoshi Tomita

The spontaneous formation of polymeric nanostructures possessing outer fluorous segments by the living coordination block copolymerization and their application to the transparent superhydrophobic coatings are described. The block copolymers (BCPs)...


Soft Matter ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 142-151 ◽  
Author(s):  
Haiyan Luo ◽  
Kun Jiang ◽  
Xiangfeng Liang ◽  
Huizhou Liu ◽  
Yingbo Li

The influence of hydrogen bonding on the morphological transition of Pluronic P123 micelles is experimentally and theoretically investigated by introducing three small molecules, i.e. propyl benzoate (PB), propyl paraben (PP) and propyl gallate (PG).


2020 ◽  
Vol 1000 ◽  
pp. 324-330
Author(s):  
Sri Agustina ◽  
Masayoshi Tokuda ◽  
Hideto Minami ◽  
Cyrille Boyer ◽  
Per B. Zetterlund

The self-assembly of block copolymers has attracted attention for many decades because it can yield polymeric nanoobjects with a wide range of morphologies. Membrane emulsification is a fairly novel technique for preparation of various types of emulsions, which relies on the dispersed phase passing through a membrane in order to effect droplet formation. In this study, we have prepared polymeric nanoparticles of different morphologies using self-assembly of asymmetric block copolymers in connection with membrane emulsification. Shirasu Porous Glass (SPG) membranes has been employed as the membrane emulsification equipment, and poly (oligoethylene glycol acrylate)-block-poly (styrene) (POEGA-b-PSt) copolymers prepared via RAFT polymerization. It has been found that a number of different morphologies can be achieved using this novel technique, including spheres, rods, and vesicles. Interestingly, the results have shown that the morphology can be controlled not only by adjusting experimental parameters specific to the membrane emulsification step such as membrane pore size and pressure, but also by changing the nature of organic solvent. As such, this method provides a novel route to these interesting nanoobjects, with interesting prospects in terms of exercising morphology control without altering the nature of the block copolymer itself.


2015 ◽  
Vol 6 (10) ◽  
pp. 1817-1829 ◽  
Author(s):  
Lichao Liu ◽  
Leilei Rui ◽  
Yun Gao ◽  
Weian Zhang

The synthesis and self-assembly of ferrocene-containing block copolymers PEG-b-PMAEFc, and the encapsulation and redox-responsive release of a model molecule (rhodamine B) upon external redox stimuli (H2O2).


RSC Advances ◽  
2014 ◽  
Vol 4 (32) ◽  
pp. 16721-16725 ◽  
Author(s):  
Gianpaolo Chieffi ◽  
Rocco Di Girolamo ◽  
Antonio Aronne ◽  
Pasquale Pernice ◽  
Esther Fanelli ◽  
...  

A fast method for the preparation of block-copolymer-based hybrid composite nanostructures and titania substrates well oriented over a large area, is illustrated.


2017 ◽  
Vol 8 (23) ◽  
pp. 3647-3656 ◽  
Author(s):  
Ryoto Tanaka ◽  
Kodai Watanabe ◽  
Takuya Yamamoto ◽  
Kenji Tajima ◽  
Takuya Isono ◽  
...  

The effect of intramolecular cross-linking on aqueous self-assembly behavior was systematically investigated based on an amphiphilic block copolymer system.


Sign in / Sign up

Export Citation Format

Share Document