A particle–carbon matrix architecture for long-term cycle stability of ZnFe2O4 anode

RSC Advances ◽  
2016 ◽  
Vol 6 (41) ◽  
pp. 35110-35117 ◽  
Author(s):  
Qiuxian Wang ◽  
Hongyun Yue ◽  
Ting Du ◽  
Wanli Zhang ◽  
Yun Qiao ◽  
...  

A particle–carbon matrix architecture of ZnFe2O4 exhibited good electrochemical performance as an anode in lithium-ion cells.

2016 ◽  
Vol 09 (02) ◽  
pp. 1650027 ◽  
Author(s):  
Yongli Cui ◽  
Jiali Wang ◽  
Mingzhen Wang ◽  
Quanchao Zhuang

Shell spinel LiNi[Formula: see text]Mn[Formula: see text]O4 hollow microspheres were successfully synthesized by MnCO3 template, and characterized by XRD, SEM, and TEM. The results show that the hollow LiNi[Formula: see text]Mn[Formula: see text]O4 cathode has good cycle stability to reach 124.5, 119.8, and 96.6[Formula: see text]mAh/g at 0.5, 1, and 5 C, the corresponding retention rate of 98.1%, 98.2%, and 98.0% after 50 cycles at 20[Formula: see text]C, and the reversible capacity of 94.6[Formula: see text]mAh/g can be obtained at 1 C rate at 55[Formula: see text]C, 83.3% retention after 100 cycles. As the temperature decreases from 10[Formula: see text]C to [Formula: see text]C, the resistance of [Formula: see text] increases from 5.5 [Formula: see text] to 135 [Formula: see text], [Formula: see text] from 27 [Formula: see text] to 353.2 [Formula: see text], and [Formula: see text] from 12.7 [Formula: see text] to 73.0 [Formula: see text]. Moreover, the B constant and [Formula: see text] activation energy are 4480[Formula: see text]K and 37.22[Formula: see text]KJ/mol for the NTC spinel material, respectively.


2019 ◽  
Vol 833 ◽  
pp. 573-579 ◽  
Author(s):  
Ling Li ◽  
Jing Zhang ◽  
Youlan Zou ◽  
Wenjuan Jiang ◽  
Weixin Lei ◽  
...  

Ionics ◽  
2017 ◽  
Vol 23 (11) ◽  
pp. 3023-3029 ◽  
Author(s):  
Chunmiao Yan ◽  
Zhen Zhang ◽  
Zongze Liu ◽  
Yameng Liu ◽  
Songping Wu

Nanoscale ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 4370-4376 ◽  
Author(s):  
Jonghyun Choi ◽  
Won-Sik Kim ◽  
Seong-Hyeon Hong

SnO2–Fe2O3–C triple-shell hollow nano-spheres are fabricated by combining the template-based sol–gel coating technique and hydrothermal method, and their electrochemical performance as an anode for lithium ion batteries (LIBs) is investigated, particularly focusing on their structural stability and long term cyclability.


Sign in / Sign up

Export Citation Format

Share Document