Highly stable SnO2–Fe2O3–C hollow spheres for reversible lithium storage with extremely long cycle life

Nanoscale ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 4370-4376 ◽  
Author(s):  
Jonghyun Choi ◽  
Won-Sik Kim ◽  
Seong-Hyeon Hong

SnO2–Fe2O3–C triple-shell hollow nano-spheres are fabricated by combining the template-based sol–gel coating technique and hydrothermal method, and their electrochemical performance as an anode for lithium ion batteries (LIBs) is investigated, particularly focusing on their structural stability and long term cyclability.

RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 39427-39433 ◽  
Author(s):  
Shi Tao ◽  
Weifeng Huang ◽  
Hui Xie ◽  
Jing Zhang ◽  
Zhicheng Wang ◽  
...  

Hierarchical structure CoS2 nanospheres with graphene (CoS2/G) composite is fabricated by a simple hydrothermal method. This composite exhibits excellent electrochemical performance, especially long cycle life.


RSC Advances ◽  
2015 ◽  
Vol 5 (70) ◽  
pp. 57127-57132 ◽  
Author(s):  
Peixun Xiong ◽  
Lingxing Zeng ◽  
Huan Li ◽  
Cheng Zheng ◽  
Mingdeng Wei

Li3V2(PO4)3/carbon nanocomposite with high electrochemical performance has been successfully synthesized by combining sol–gel method and nanocasting route.


RSC Advances ◽  
2019 ◽  
Vol 9 (47) ◽  
pp. 27257-27263 ◽  
Author(s):  
Jun Young Cheong ◽  
Seokwon Lee ◽  
Jiyoung Lee ◽  
Haeseong Lim ◽  
Su-Ho Cho ◽  
...  

Novel NiFe2O4–CuFeO2 heterostructures were synthesized by sol–gel process and subsequent heat treatments, which exhibit excellent long-term high-rate cyclability.


Author(s):  
G. S. Zakharova ◽  
E. Thauer ◽  
A. N. Enyashin ◽  
L. F. Deeg ◽  
Q. Zhu ◽  
...  

AbstractThe potential battery electrode material V2O3/C has been prepared using a sol–gel thermolysis technique, employing vanadyl hydroxide as precursor and different organic acids as both chelating agents and carbon sources. Composition and morphology of resultant materials were characterized by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopies, physical sorption, and elemental analysis. Stability and electronic properties of model composites with chemically and physically integrated carbon were studied by means of quantum-chemical calculations. All fabricated composites are hierarchically structured and consist of carbon-covered microparticles assembled of polyhedral V2O3 nanograins with intrusions of amorphous carbon at the grain boundaries. Such V2O3/C phase separation is thermodynamically favored while formation of vanadium (oxy)carbides or heavily doped V2O3 is highly unlikely. When used as anode for lithium-ion batteries, the nanocomposite V2O3/C fabricated with citric acid exhibits superior electrochemical performance with an excellent cycle stability and a specific charge capacity of 335 mAh g−1 in cycle 95 at 100 mA g−1. We also find that the used carbon source has only minor effects on the materials’ electrochemical performance.


2016 ◽  
Vol 4 (40) ◽  
pp. 15302-15308 ◽  
Author(s):  
Zhigao Luo ◽  
Jiang Zhou ◽  
Lirong Wang ◽  
Guozhao Fang ◽  
Anqiang Pan ◽  
...  

We report the synthesis of a novel 2D hybrid nanosheet constructed by few layered MoSe2 grown on reduced graphene oxide (rGO), which exhibits excellent electrochemical performance as anodes for lithium ion batteries.


CrystEngComm ◽  
2020 ◽  
Vol 22 (21) ◽  
pp. 3588-3597 ◽  
Author(s):  
Xiangchen Zhao ◽  
Guiling Niu ◽  
Hongxun Yang ◽  
Jiaojiao Ma ◽  
Mengfei Sun ◽  
...  

New MIL-88A@polyoxometalates microrods have been constructed via a simple one-step hydrothermal method, exhibiting the improved lithium storage capacity, rate performance and cycling stability.


2011 ◽  
Vol 509 (26) ◽  
pp. 7205-7209 ◽  
Author(s):  
Hongfa Xiang ◽  
Bingbing Tian ◽  
Peichao Lian ◽  
Zhong Li ◽  
Haihui Wang

NANO ◽  
2019 ◽  
Vol 14 (03) ◽  
pp. 1950037 ◽  
Author(s):  
Bingning Wang ◽  
Xuehua Liu ◽  
Binghui Xu ◽  
Yanhui Li ◽  
Dan Xiu ◽  
...  

Three-dimensional reduced graphene oxide (RGO) matrix decorated with nanoflowers of layered MoS2 (denoted as 3D MoS2/RGO) have been synthesized via a facile one-pot stepwise hydrothermal method. Graphene oxide (GO) is used as precursor of RGO and a 3D GO network is formed in the first-step of hydrothermal treatment. At the second stage of hydrothermal treatment, nanoflowers of layered MoS2 form and anchor on the surface of previously formed 3D RGO network. In this preparation, thiourea not only induces the formation of the 3D architecture at a relatively low temperature, but also works as sulfur precursor of MoS2. The synthesized composites have been investigated with XRD, SEM, TEM, Raman spectra, TGA, N2 sorption technique and electrochemical measurements. In comparison with normal MoS2/RGO composites, the 3D MoS2/RGO composite shows improved electrochemical performance as anode material for lithium-ion batteries. A high reversible capacity of 930[Formula: see text]mAh[Formula: see text][Formula: see text][Formula: see text]g[Formula: see text] after 130 cycles under a current density of 200[Formula: see text]mA[Formula: see text][Formula: see text][Formula: see text]g[Formula: see text] as well as good rate capability and superior cyclic stability have been observed. The superior electrochemical performance of the 3D MoS2/RGO composite as anode active material for lithium-ion battery is ascribed to its robust 3D structures, enhanced surface area and the synergistic effect between graphene matrix and the MoS2 nanoflowers subunit.


2019 ◽  
Vol 48 (6) ◽  
pp. 2019-2027 ◽  
Author(s):  
Weiwei Sun ◽  
Si Chen ◽  
Yong Wang

A MOF-derived approach is used to fabricate a Fe–Mn–O/C hollow microsphere anode, which delivers excellent electrochemical performance for lithium-ion batteries.


Sign in / Sign up

Export Citation Format

Share Document