scholarly journals Three-dimensional morphology of the interface between micro porous layer and catalyst layer in a polymer electrolyte membrane fuel cell

RSC Advances ◽  
2016 ◽  
Vol 6 (84) ◽  
pp. 80700-80705 ◽  
Author(s):  
L. Zielke ◽  
S. Vierrath ◽  
R. Moroni ◽  
A. Mondon ◽  
R. Zengerle ◽  
...  

FIB/SEM tomography and ALD infiltration are combined to analyse the interface between MPL and CL in a PEM fuel cell.

2021 ◽  
Vol 11 (13) ◽  
pp. 5964
Author(s):  
Wei-Wei Yuan ◽  
Kai Ou ◽  
Seunghun Jung ◽  
Young-Bae Kim

Water management is one issue that must be surpassed to ensure high membrane proton conductivity and adequate reactant transport in the membrane-electrode assembly (MEA) simultaneously. A well-designed water management system is based on a comprehensive understanding of water transport in the inner part of the polymer electrolyte membrane (PEM) fuel cell. In this work, the water transport phenomena in the MEA PEM fuel cell are analyzed by using a mathematical model. The transport of diluted species interface is used to model the transport of water in the ionomer phase in the catalytic layer and the membrane domains. The molecular flux of water is defined using Nernst–Planck equations, including migration and Fickian diffusion using parameters obtained experimentally for diffusivity and mobility based on water drag for a fully humidified membrane. The proposed model 1D model includes anode gas channel, cathode gas channel, anode gas diffusion layer (GDL), cathode GDL, anode catalyst layer, cathode catalyst layer, and proton exchange membrane. Water activity, ionomer conductivity, and output voltage are predicted by changing the humidity on the anode side of the fuel cell.


2017 ◽  
Vol 6 (2) ◽  
pp. 181 ◽  
Author(s):  
Kamaljyoti Talukdar

The present work consists of the modeling and analysis of solar photovoltaic panels integrated with electrolyzer bank and Polymer Electrolyte Membrane (PEM) fuel cell stacks for running different appliances of a hospital located in Kolkata for different climatic conditions. Electric power is generated by an array of solar photovoltaic modules. Excess energy after meeting the requirements of the hospital during peak sunshine hours is supplied to an electrolyzer bank to generate hydrogen gas, which is consumed by the PEM fuel cell stack to support the power requirement during the energy deficit hours. The study reveals that 875 solar photovoltaic modules in parallel each having 2 modules in series of Central Electronics Limited Make PM 150 with a 178.537 kW electrolyzer and 27 PEM fuel cell stacks, each of 382.372 W, can support the energy requirement of a 200 lights (100 W each), 4 pumps (2 kW each), 120 fans(65 W each) and 5 refrigerators (2 kW each)system operated for 16 hours, 2 hours,15 hours and 24 hours respectively. 123 solar photovoltaic modules in parallel each having 2 modules in series of Central Electronics Limited Make PM 150 is needed to run the gas compressor for storing hydrogen in the cylinder during sunshine hours.  Keywords: Central Electronics Limited, Electrolyzer, PEM, PM 150, Solar photovoltaic. Article History: Received Feb 5th 2017; Received in revised form June 2nd 2017; Accepted June 28th 2017; Available onlineHow to Cite This Article: Talukdar, K. (2017). Modeling and Analysis of Solar Photovoltaic Assisted Electrolyzer-Polymer Electrolyte Membrane Fuel Cell For Running a Hospital in Remote Area in Kolkata,India. International Journal of Renewable Energy Develeopment, 6(2), 181-191.https://dx.doi.org/10.14710/ijred.6.2.181-191


2020 ◽  
Vol 8 (10) ◽  
pp. 3575-3587
Author(s):  
Seyedali Sabzpoushan ◽  
Hassan Jafari Mosleh ◽  
Soheil Kavian ◽  
Mohsen Saffari Pour ◽  
Omid Mohammadi ◽  
...  

Author(s):  
Peter Dobson ◽  
Marc Secanell

The catalyst layer of a polymer electrolyte fuel cell is commonly represented in mathematical models as an agglomerate structure of carbon catalyst-support particles. There are two prevailing assumptions for the structure of the agglomerates. The first is that the pores are filled with perfluorosulfonated-ionomer (PFSI). The second is that the pores are hydrophilic and are flooded only with liquid water during operation. The objective of this work is to develop numerical models for single water-filled and ionomer-filled agglomerates in a cathode catalyst layer of a polymer electrolyte membrane fuel cell (PEMFC), and investigate the properties of oxygen transport, proton transport, and reaction kinetics. The two models provide different solutions for the distribution of oxygen and protons, and produce a different reaction profile within the agglomerate. Previous numerical water-filled ionomer models in the literature have neglected the effect of the ionomer thin film. Therefore, the results obtained for both ionomer and water-filled models could not be easily compared. In this article, the equations developed relate the assumed structure of the agglomerates to the structure of the catalyst layer (CL). Results compare the effect of the thin film thickness in the two different types of agglomerates and relate the phenomena occurring within the agglomerates to overall catalyst layer performance.


Sign in / Sign up

Export Citation Format

Share Document