Rutile nanotubes by electrochemical anodization

RSC Advances ◽  
2016 ◽  
Vol 6 (78) ◽  
pp. 74510-74514 ◽  
Author(s):  
Rangasamy Savitha ◽  
Ravikrishna Raghunathan ◽  
Raghuram Chetty

We present a facile method to synthesize rutile titanium dioxide nanotubes (R-TiNT), directly in powder form through rapid breakdown electrochemical anodization by modifying the post anodization processing and annealing temperature.

2011 ◽  
Vol 1352 ◽  
Author(s):  
Lijia Liu ◽  
Sun Kim ◽  
Jeffrey Chan ◽  
Tsun-Kong Sham

ABSTRACTTitanium dioxide nanotubes (TiO2-NT) have been synthesized via an electrochemical anodization strategy followed by calcination under different temperatures to form TiO2 nanostructures of anatase and rutile crystal phases. The nanotube-on-Ti structure is further used as a substrate for calcium hydroxyapatite (HAp) coating. The effect of TiO2 morphology and crystal phases (i.e. amorphous, anatase and rutile) on the coating efficiency of HAp has been investigated in comparison with HAp coating on bare Ti metal. The HAp coated TiO2-NT have been studied using X-ray absorption near-edge structure (XANES) at the Ti K- and Ca K-edge. The results show that TiO2 of amorphous and anatase phases are of comparably good performance for HAp crystallization, and both are better than rutile TiO2, while HAp is hardly found on bare Ti. The implications of the findings are discussed.


2019 ◽  
Vol 1 (8) ◽  
pp. 2801-2816 ◽  
Author(s):  
Walaa A. Abbas ◽  
Ibrahim H. Abdullah ◽  
Basant A. Ali ◽  
Nashaat Ahmed ◽  
Aya M. Mohamed ◽  
...  

The use of titanium dioxide nanotubes in the powder form (TNTP) has been a hot topic for the past few decades in many applications.


10.30544/336 ◽  
2018 ◽  
Vol 24 (2) ◽  
pp. 83-92
Author(s):  
Ying Pio Lim ◽  
Wei Hong Yeo

Titanium is one of the biomaterials commonly used for prosthetic devices due to its bio-inert properties. The discovery of titanium dioxide nanotubes (TDNTs) has created a great interest in medical applications such as dental and orthopedic implants. The synthesizing of TDNTs can produce different morphology, sizes and mechanical properties of the nanotubes – depending on the applied method. In this study, an electrochemical anodization method was used for synthesizing the TDNTs. A 100 ml mixture of 99% of ethylene glycol (EG), 1% of deionized water and 1 wt.% of ammonium fluoride (NH4F) was used as the electrolyte of the electrochemical cell. Parameters such as anodization time and the voltage applied were used to alter the morphology of the TDNTs formed. The produced nanotubes were analyzed and characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and microhardness tester. The SEM results showed that the formed diameter of nanotubes was mainly affected by the anodizing voltage. The wall thickness was found to be irrelevant to the parameters conducted in this study. The diameter of nanotubes formed with an anodizing voltage of 30, 45 and 60 V have the diameters ranging from 46 nm to 71 nm. All of the TDNTs samples formed have a wall thickness between 11 nm and 13 nm. With the use of EG and NH4F as an electrolyte, the array of TDNTs with honeycomb structure was formed. In general, hardness test showed that the hardness of the nanotubes was inversely proportional with the anodizing time. The anodizing voltage only has little effect on the hardness of the nanotubes. The nanotubes formed by 60 V have about 3 to 5% lower hardness compared to those formed by 30 V for different anodizing times.


Author(s):  
Surendra Gulla ◽  
Dakshayani Lomada ◽  
Prasanna Babu Araveti ◽  
Anand Srivastava ◽  
Mamatha Kumari Murikinati ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4102 ◽  
Author(s):  
Ting Li ◽  
Dongyan Ding

We synthesized Ni/Si-codoped TiO2 nanostructures for photoelectrochemical (PEC) water splitting, by electrochemical anodization of Ti-1Ni-5Si alloy foils in ethylene glycol/glycerol solutions containing a small amount of water. The effects of annealing temperature on PEC properties of Ni/Si-codoped TiO2 photoanode were investigated. We found that the Ni/Si-codoped TiO2 photoanode annealed at 700 °C had an anatase-rutile mixed phase and exhibited the highest photocurrent density of 1.15 mA/cm2 at 0 V (vs. Ag/AgCl), corresponding to a photoconversion efficiency of 0.70%, which was superior to Ni-doped and Si-doped TiO2. This improvement in PEC water splitting could be attributed to the extended light absorption, faster charge transfer, possibly lower charge recombination, and longer lifetime.


Sign in / Sign up

Export Citation Format

Share Document