The effect that comparing molecular animations of varying accuracy has on students’ submicroscopic explanations

2017 ◽  
Vol 18 (4) ◽  
pp. 582-600 ◽  
Author(s):  
Resa M. Kelly ◽  
Sevil Akaygun ◽  
Sarah J. R. Hansen ◽  
Adrian Villalta-Cerdas

In this qualitative study, we examined how a group of seventeen first semester General Chemistry students responded when they were shown contrasting molecular animations of a reduction–oxidation (redox) reaction between solid copper and aqueous silver nitrate for which they first viewed a video of the actual experiment. The animations contrasted in that they portrayed different reaction mechanisms for the redox reaction. One animation was scientifically accurate and reflected an electron exchange mechanism, while the other was purposefully inaccurate and represented a physical exchange between the ions. Students were instructed to critique each animation for its fit with the experimental evidence and to ultimately choose the animation that they felt best depicted the molecular level of the chemical reaction. Analyses showed that most students identified that the electron exchange animation was the more scientifically accurate animation; however, approximately half of the students revised their drawings to fit with the inaccurate physical exchange animation. In addition, nearly all students thought that both animations were correct and useful for understanding salient information about the redox reaction. The results indicate that when students are shown contrasting animations of varying accuracy they make errors in deciding how the animations are supported and refuted by the evidence, but the treatment is effective. Contrasting animations promote students to think deeply about how animations fit with experimental evidence and is a promising way to engage students to think deeply about animations.

2017 ◽  
Vol 18 (4) ◽  
pp. 785-797 ◽  
Author(s):  
Vickie M. Williamson ◽  
Caitlin J. Zumalt

Two large sections of first-semester general chemistry were assigned to use different homework systems. One section used MindTap, a Cengage Learning product, which presents short sections of the textbook with embedded homework questions; such that students could read the textbook section then answer one or more questions in the same screen. The other section used Online Web Learning (OWL-version 2) also from Cengage Learning, which presents homework questions that contains links to open the textbook in a separate window. Findings showed no difference between the groups in any course grades, with both groups strongly indicating that they learned from their system. During a second-semester chemistry course taught by the same instructor, all students used OWLv2. At the end of the second semester, students who had used MindTap during the first semester were given a delayed survey, containing Likert-scaled and open-response questions dealing with students’ perceived learning/perceived level of understanding with each system, how easy each system was to use, and the advantages/disadvantages of each system. In addition, students were asked to compare the two systems giving their homework preference. Students were heavily positive towards the MindTap system. Further data was collected to compare students who used MindTap for the first semester and OWL for the second-semester with those who used the systems in reverse order, using the same survey. Results showed that students indicated significantly higher perceived learning with MindTap and better attitudes and opinions of MindTap, with its single window arrangement, often citing that they read more with MindTap.


2015 ◽  
Vol 16 (2) ◽  
pp. 318-337 ◽  
Author(s):  
Brent Ferrell ◽  
Jack Barbera

Research in academic motivation has highlighted a number of salient constructs that are predictive of positive learning strategies and academic success. Most of this research has centered on college-level social sciences or secondary school student populations. The main purpose of this study was to adapt existing measures of personal interest and effort beliefs to a college chemistry context. In addition, a chemistry-specific measure of self-efficacy was evaluated in a modified form. This set of scales was initially administered at two time points in a first-semester general chemistry course to a sample of undergraduates (n1= 373,n2= 294). Confirmatory factor analyses (CFA) were conducted to determine whether the scales were functional in a chemistry context. Following revision of the scales, all CFA models demonstrated acceptable fit to the data. Cross-validation of the revised scales was performed using two different populations (n= 432,n= 728), with both studies producing similar model fits. Furthermore, our data shows that chemistry majors reported higher self-efficacy and interest than non-science majors. Cronbach's alpha estimates ranged from 0.75 to 0.92 for the revised scales across all studies. This set of scales could provide useful tools for assessing general chemistry students' motivation and the motivational impacts of various teaching practices.


2019 ◽  
Vol 20 (3) ◽  
pp. 570-593 ◽  
Author(s):  
Vanessa R. Ralph ◽  
Scott E. Lewis

Students who score within the bottom quartile on cognitive measures of math aptitude have been identified as at-risk for low performance in chemistry courses, with less attention as to why such differential performance persists. At-risk students struggle most differentially on assessment items related to the mole concept and stoichiometry. An exploration as to the nature of the differential performance observed became of great interest as the assessment of these topics rarely progresses beyond multiplication or division, and at-risk students who achieved proficiency with the mole concept and stoichiometry had no noticeable gaps in academic chemistry performance when compared to students scoring in the top three quartiles of math aptitude. Thus, students in first-semester general chemistry were surveyed to describe their solution processes toward assessment items involving the mole concept and stoichiometry. Three hundred and forty-eight students responded to all survey prompts with 101 identified as at-risk. Findings suggest that while all students were observed to struggle in the conceptualization of the algorithms by which they execute solution processes, not-at-risk chemistry students were more likely to achieve correct answers via chemically implausible solution pathways. Rather than suggest the removal of assessment practices involving algorithmic, multiple-choice assessment on these topics, the implications include practical suggestions and opportunities for further research toward improving the equitability of measures used to assess proficiency with stoichiometry.


2016 ◽  
Vol 17 (4) ◽  
pp. 1054-1066 ◽  
Author(s):  
Brent Ferrell ◽  
Michael M. Phillips ◽  
Jack Barbera

Student success in chemistry is inherently tied to motivational and other affective processes. We investigated three distinct constructs tied to motivation: self-efficacy, interest, and effort beliefs. These variables were measured twice over the course of a semester in three sections of a first-semester general chemistry course (n= 170). We explored the connections that exist among these three constructs as well as their connections to course performance. Multiple regression and path analysis revealed that self-efficacy measured during week 12 was the strongest predictor of final course grade followed by situational interest. We also report that personal interest is a significant predictor of future self-efficacy. Our results add to the growing literature on psychological constructs within chemistry education by identifying variables related to motivation that have a significant connection to course performance among chemistry students. We briefly address how these variables could be targeted in the classroom.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Sachin Nedungadi ◽  
Sue H. Paek ◽  
Corina E. Brown

AbstractUndergraduate organic chemistry has been found to be historically difficult for students and one area where students struggle is organic reaction mechanisms. The difficulties students face with reaction mechanisms has been a source of interest in chemical education research but most studies done have been purely qualitative. An assessment tool that could be used on a large-scale for instructors to gauge the difficulties their students face, would be useful. The aim of this pilot study is to use Rasch analysis to establish the validity and reliability of the concepts important for developing proficiency in organic reaction mechanisms inventory (RMCPI). The test, containing 25 items, was administered to first semester organic chemistry students (N = 44) at a mid-sized university. The data was analyzed using Rasch techniques to explore the dimensionality of the instrument, the difficulty of the items, the item fit, and the reliability. The results indicate that the instrument is unidimensional and most of the items fit well to the dichotomous Rasch model. The test was found to be difficult and this will be explored further by increasing the sample size, administering the test to students from other universities and increasing the number of items on the inventory.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sachin Nedungadi ◽  
Michael D. Mosher ◽  
Sue Hyeon Paek ◽  
Richard M. Hyslop ◽  
Corina E. Brown

Abstract The fundamental concepts for organic reaction mechanisms inventory (FC-ORMI) is a multiple-choice instrument designed to assess students’ conception of fundamental concepts for understanding organic reaction mechanisms. The concepts were identified from open-ended interviews and a national survey of organic chemistry instructors reported in a previous study. This manuscript describes the development of the inventory items related to these identified concepts and the psychometric analysis of the instrument. In the developmental stage, open-ended questions were administered to first-semester organic chemistry students (N = 138), and open-ended interviews were conducted with students (N = 22) from the same pool to gain insight into their thought processes. The answers revealed alternate conceptions which were used to formulate distractors for the inventory. A pilot version and a beta version of the inventory were administered to 105 and 359 first-semester organic chemistry students, respectively. From these administrations, the 26-item alpha version was developed and administered to first-semester undergraduate organic chemistry students (N = 753). Psychometric analysis was conducted at the item and test level using Classical Test Theory and Rasch analysis. The results indicate that the items on the FC-ORMI function well to reveal students’ alternate conceptions. The instrument meets the acceptable standards of validity and reliability for concept inventories.


2004 ◽  
Vol 69 (2) ◽  
pp. 419-425 ◽  
Author(s):  
Katarína Gmucová ◽  
Jozef Orlický ◽  
Juraj Pavlásek

The redox reaction of the neurotransmitter dopamine at the carbon fibre microelectrode was studied by several electrochemical methods. It was found that under conditions usual in a living body, the diffusion current fullfils, within experimental errors, the behavior theoretically predicted by the Cottrell equation. Nevertheless, attention should be paid to the fact that unsupported or weakly supported conditions give rise to a non-Cottrell response of diffusion current. Moreover, similar changes were observed if the dopamine concentration was either lower such as several units of μmol l-1, or about 100 μmol l-1 or higher. The non-Cottrell behavior of diffusion current involves the nonlinearity of the dopamine calibration curve obtained by pulse techniques. The present work is aimed at pointing out that such behavior of the measured data could lead to misinterpretation of the obtained dopamine concentration. Similar features could be also achieved for the other catecholamines.


Sign in / Sign up

Export Citation Format

Share Document