Facile preparation of patterned petal-like PLA surfaces with tunable water micro-droplet adhesion properties based on stereo-complex co-crystallization from non-solvent induced phase separation processes

2016 ◽  
Vol 4 (31) ◽  
pp. 12058-12064 ◽  
Author(s):  
Ailin Gao ◽  
Yongqing Zhao ◽  
Qing Yang ◽  
Yinyi Fu ◽  
Lixin Xue

A facile method to prepare rose petal-like quasi-superhydrophobic poly(lactide) (PLA) membrane surfaces with tunable water droplet adhesion properties.

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1576
Author(s):  
Biswaroop Mukherjee ◽  
Buddhapriya Chakrabarti

Surface segregation of the low molecular weight component of a polymeric mixture is a ubiquitous phenomenon that leads to degradation of industrial formulations. We report a simultaneous phase separation and surface migration phenomena in oligomer–polymer ( O P ) and oligomer–gel ( O G ) systems following a temperature quench that induces demixing of components. We compute equilibrium and time varying migrant (oligomer) density profiles and wetting layer thickness in these systems using coarse grained molecular dynamics (CGMD) and mesoscale hydrodynamics (MH) simulations. Such multiscale methods quantitatively describe the phenomena over a wide range of length and time scales. We show that surface migration in gel–oligomer systems is significantly reduced on account of network elasticity. Furthermore, the phase separation processes are significantly slowed in gels leading to the modification of the well known Lifshitz–Slyozov–Wagner (LSW) law ℓ ( τ ) ∼ τ 1 / 3 . Our work allows for rational design of polymer/gel–oligomer mixtures with predictable surface segregation characteristics that can be compared against experiments.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3097
Author(s):  
Mónica Fuensanta ◽  
José Miguel Martín-Martínez

Thermoplastic polyurethanes (TPUs) were synthetized with blends of poly(propylene glycol) (PPG) and poly(1,4-butylene adipate) (PAd) polyols, diphenylmethane-4,4′-diisocyanate (MDI) and 1,4-butanediol (BD) chain extender; different NCO/OH ratios were used. The structure and viscoelastic properties of the TPUs were assessed by infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, thermal gravimetric analysis and plate-plate rheology, and their pressure sensitive adhesion properties were assessed by probe tack and 180° peel tests. The incompatibility of the PPG and PAd soft segments and the segregation of the hard and soft segments determined the phase separation and the viscoelastic properties of the TPUs. On the other hand, the increase of the NCO/OH ratio improved the miscibility of the PPG and PAd soft segments and decreased the extent of phase separation. The temperatures of the cool crystallization and melting were lower and their enthalpies were higher in the TPU made with NCO/OH ratio of 1.20. The moduli of the TPUs increased by increasing the NCO/OH ratio, and the tack was higher by decreasing the NCO/OH ratio. In general, a good agreement between the predicted and experimental tack and 180° peel strength values was obtained, and the TPUs synthesized with PPG+PAd soft segments had potential application as pressure sensitive adhesives (PSAs).


2019 ◽  
Vol 34 (24) ◽  
pp. 4066-4075
Author(s):  
Mingliang Sun ◽  
Tianbo Zhao ◽  
Zhaofei Ma ◽  
Zunfeng Li

Abstract


Sign in / Sign up

Export Citation Format

Share Document