scholarly journals Structural and Viscoelastic Properties of Thermoplastic Polyurethanes Containing Mixed Soft Segments with Potential Application as Pressure Sensitive Adhesives

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3097
Author(s):  
Mónica Fuensanta ◽  
José Miguel Martín-Martínez

Thermoplastic polyurethanes (TPUs) were synthetized with blends of poly(propylene glycol) (PPG) and poly(1,4-butylene adipate) (PAd) polyols, diphenylmethane-4,4′-diisocyanate (MDI) and 1,4-butanediol (BD) chain extender; different NCO/OH ratios were used. The structure and viscoelastic properties of the TPUs were assessed by infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, thermal gravimetric analysis and plate-plate rheology, and their pressure sensitive adhesion properties were assessed by probe tack and 180° peel tests. The incompatibility of the PPG and PAd soft segments and the segregation of the hard and soft segments determined the phase separation and the viscoelastic properties of the TPUs. On the other hand, the increase of the NCO/OH ratio improved the miscibility of the PPG and PAd soft segments and decreased the extent of phase separation. The temperatures of the cool crystallization and melting were lower and their enthalpies were higher in the TPU made with NCO/OH ratio of 1.20. The moduli of the TPUs increased by increasing the NCO/OH ratio, and the tack was higher by decreasing the NCO/OH ratio. In general, a good agreement between the predicted and experimental tack and 180° peel strength values was obtained, and the TPUs synthesized with PPG+PAd soft segments had potential application as pressure sensitive adhesives (PSAs).

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1608 ◽  
Author(s):  
Fuensanta ◽  
Vallino-Moyano ◽  
Martín-Martínez

Pressure sensitive adhesives made with blends of thermoplastic polyurethanes (TPUs PSAs) with satisfactory tack, cohesion, and adhesion have been developed. A simple procedure consisting of the physical blending of methyl ethyl ketone (MEK) solutions of two thermoplastic polyurethanes (TPUs) with very different properties—TPU1 and TPU2—was used, and two different blending procedures have been employed. The TPUs were characterized by infra-red spectroscopy in attenuated total reflectance mode (ATR-IR spectroscopy), differential scanning calorimetry, thermal gravimetric analysis, and plate-plate rheology (temperature and frequency sweeps). The TPUs PSAs were characterized by tack measurement, creep test, and the 180° peel test at 25 °C. The procedure for preparing the blends of the TPUs determined differently their viscoelastic properties, and the properties of the TPUs PSAs as well, the blending of separate MEK solutions of the two TPUs imparted higher tack and 180° peel strength than the blending of the two TPUs in MEK. TPU1 + TPU2 blends showed somewhat similar contributions of the free and hydrogen-bonded urethane groups and they had an almost similar degree of phase separation, irrespective of the composition of the blend. Two main thermal decompositions at 308–317 °C due to the urethane hard domains and another at 363–373 °C due to the soft domains could be distinguished in the TPU1 + TPU2 blends, the weight loss of the hard domains increased and the one of the soft domains decreased by increasing the amount of TPU2 in the blends. The storage moduli of the TPU1 + TPU2 blends were similar for temperatures lower than 20 °C and the moduli at the cross over of the moduli were lower than in the parent TPUs. The improved properties of the TPU1 + TPU2 blends derived from the creation of a higher number of hydrogen bonds upon removal of the MEK solvent, which lead to a lower degree of phase separation between the soft and the hard domains than in the parent TPUs. As a consequence, the properties of the TPU1 + TPU2 PSAs were improved because good tack, high 180° peel strength, and sufficient cohesion were obtained, particularly in 70 wt% TPU1 + 30 wt% TPU2 PSA.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2478
Author(s):  
Mónica Fuensanta ◽  
Abbas Khoshnood ◽  
José Miguel Martín-Martínez

Dimethylolpropionic acid (DMPA) internal emulsifier has been added before, during and after prepolymer formation in the synthesis of waterborne poly(urethane-urea)s (PUDs) and their structure–properties relationships have been assessed. PUDs were characterized by pH, viscosity and particle size measurements, and the structure of the poly(urethane-urea) (PU) films was assessed by infra-red spectroscopy, differential scanning calorimetry, X-ray diffraction, thermal gravimetric analysis, plate–plate rheology and dynamic mechanical thermal analysis. The adhesion properties of the PUDs were measured by cross-hatch adhesion and T-peel test. The lowest pH value and the highest mean particle size were found in the PUD made by adding DMPA after prepolymer formation, all PUDs showed relatively ample mono-modal particle size distributions. The highest viscosity and noticeable shear thinning were obtained in the PUD made by adding DMPA during prepolymer formation. Depending on the stage of addition of DMPA, the length of the prepolymer varied and the PU films showed different degree of micro-phase separation. Because the shortest prepolymer was formed in the PU made with DMPA added before prepolymer, this PU film showed the lowest storage moduli and early melting indicating higher degree of micro-phase separation. The highest storage modulus, later melting, higher temperature and lower modulus at the cross between the storage and loss moduli corresponded to the PU made by adding DMPA after prepolymer formation, because the longer prepolymer produced during synthesis. The lowest thermal stability corresponded to the PU made by adding DMPA during prepolymer formation and the structures of all PU films were dominated by the soft domains, the main structural differences derived from the hard domains. Whereas DMPA-isophorone diisocyanate (IPDI) urethane and urea hard domains were created in the PU film made by adding DMPA during prepolymer formation, the other PU films showed DMPA-IPDI, polyester-IPDI and two different DMPA-IPDI-polyester hard domains. Finally, the adhesion properties of the PUDs and PU coatings were excellent and they were not influenced by the structural differences caused by adding DMPA in different stages of the synthesis.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 627 ◽  
Author(s):  
Mónica Fuensanta ◽  
Abbas Khoshnood ◽  
Francisco Rodríguez-Llansola ◽  
José Miguel Martín-Martínez

New waterborne polyurethane-urea dispersions with adequate adhesion and cohesion properties have been synthesized by reacting isophorone diisocyanate, copolymer of ether and carbonate diol polyol and three amino-alcohols with different number of OH groups chain extenders using the prepolymer method. The waterborne polyurethane-urea dispersions were characterized by pH, particle-size distribution, and viscosity, and the polyurethane-urea films were characterized by attenuated total reflectance infrared (ATR-IR) spectroscopy, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and plate-plate rheology (temperature and frequency sweeps). Polyurethane-urea pressure-sensitive adhesives (PUU PSAs) were prepared by placing the waterborne polyurethane dispersions on polyethylene terephthalate (PET) films and they were characterized at 25 °C by creep test, tack and 180° peel test. The waterborne polyurethane-urea dispersions showed mean particle sizes between 51 and 78 nm and viscosities in the range of 58–133 mPa·s. The polyurethane-urea films showed glass transition temperatures (Tgs) lower than −64 °C, and they showed a cross of the storage and loss moduli between −8 and 68 °C depending on the number of OH groups in the amino-alcohol chain extender. Different types of PUU PSAs (removable, high shear) were obtained by changing the number of OH groups in the amino-alcohol chain extender. The tack at 25 °C of the PUU PSAs varied between 488 and 1807 kPa and the 180° peel strength values ranged between 0.4 and 6.4 N/cm, and their holding times were between 2 min and 5 days. The new PUU PSAs made with amino-alcohol chain extender seemed very promising for designing environmentally friendly waterborne PSAs with high tack and improved cohesion and adhesion property.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2627
Author(s):  
Irene Márquez ◽  
Núria Paredes ◽  
Felipe Alarcia ◽  
José Ignacio Velasco

A series of pressure-sensitive adhesives (PSAs) was prepared using a constant monomeric composition and different preparation processes to investigate the best combination to obtain the best balance between peel resistance, tack, and shear resistance. The monomeric composition was a 1:1 combination of two different water-based acrylic polymers—one with a high shear resistance (A) and the other with a high peel resistance and tack (B). Two different strategies were applied to prepare the adhesives: physical blending of polymers A and B and in situ emulsion polymerization of A + B, either in one or two steps; in this last case, by polymerizing A or B first. To characterize the polymer, the average particle size and viscosity were analyzed. The glass transition temperature (Tg) was determined by differential scanning calorimetry (DSC). The tetrahydrofuran (THF) insoluble polymer fraction was used to calculate the gel content, and the soluble part was used to determine the average sol molecular weight by means of gel permeation chromatography (GPC). The adhesive performance was assessed by measuring tack as well as peel and shear resistance. The mechanical properties were obtained by calculating the shear modulus and determination of maximum stress and the deformation energy. Moreover, an adhesive performance index (API) was designed to determine which samples are closest to the requirements demanded by the self-adhesive label market.


2019 ◽  
Vol 136 (29) ◽  
pp. 47791 ◽  
Author(s):  
Shun Okada ◽  
Yusuke Kashihara ◽  
Tomoyasu Hirai ◽  
Syuji Fujii ◽  
Yoshinobu Nakamura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document