Efficient wide band gap double cation – double halide perovskite solar cells

2017 ◽  
Vol 5 (7) ◽  
pp. 3203-3207 ◽  
Author(s):  
Dávid Forgács ◽  
Daniel Pérez-del-Rey ◽  
Jorge Ávila ◽  
Cristina Momblona ◽  
Lidón Gil-Escrig ◽  
...  

We study the properties of the series of compounds Cs0.15FA0.85Pb(BrxI1−x)3, aiming to develop an efficient complementary absorber for MAPbI3 in all-perovskite tandems. A bromide content of 0.7 leads to a band gap of 2 eV and a maximum PCE of 11.5% in solar cells, among the highest reported for band gaps wider than 1.8 eV.

2017 ◽  
Vol 3 (1) ◽  
pp. 214-219 ◽  
Author(s):  
Giulia Longo ◽  
Cristina Momblona ◽  
Maria-Grazia La-Placa ◽  
Lidón Gil-Escrig ◽  
Michele Sessolo ◽  
...  

Author(s):  
Mengmeng Chen ◽  
Muhammad Akmal Kamarudin ◽  
Ajay K. Baranwal ◽  
Gaurav Kapil ◽  
Teresa S. Ripolles ◽  
...  

2020 ◽  
Vol 12 (19) ◽  
pp. 21772-21778 ◽  
Author(s):  
Qing-Qing Ye ◽  
Meng Li ◽  
Xiao-Bo Shi ◽  
Ming-Peng Zhuo ◽  
Kai-Li Wang ◽  
...  

2018 ◽  
Vol 10 (26) ◽  
pp. 22074-22082 ◽  
Author(s):  
Dhruba B. Khadka ◽  
Yasuhiro Shirai ◽  
Masatoshi Yanagida ◽  
Takeshi Noda ◽  
Kenjiro Miyano

Author(s):  
Teresa S. Ripolles ◽  
Chi Huey Ng ◽  
Kengo Hamada ◽  
Siow Hwa Teo ◽  
Hong Ngee Lim ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Parnian Ferdowsi ◽  
Efrain Ochoa-Martinez ◽  
Sandy Sanchez Alonso ◽  
Ullrich Steiner ◽  
Michael Saliba

AbstractWide band-gap perovskite solar cells have the potential for a relatively high output voltage and resilience in a degradation-inducing environment. Investigating the reasons why high voltages with adequate output power have not been realized yet is an underexplored part in perovskite research although it is of paramount interest for multijunction solar cells. One reason is interfacial carrier recombination that leads to reduced carrier lifetimes and voltage loss. To further improve the Voc of methylammonium lead tri-bromide (MAPbBr3), that has a band-gap of 2.3 eV, interface passivation technique is an important strategy. Here we demonstrate two ultrathin passivation layers consisting of PCBM and PMMA, that can effectively passivate defects at the TiO2/perovskite and perovskite/spiro-OMeTAD interfaces, respectively. In addition, perovskite crystallization was investigated with the established anti-solvent method and the novel flash infrared annealing (FIRA) with and without passivation layers. These modifications significantly suppress interfacial recombination providing a pathway for improved VOC’s from 1.27 to 1.41 V using anti solvent and from 1.12 to 1.36 V using FIRA. Furthermore, we obtained more stable devices through passivation after 140 h where the device retained 70% of the initial performance value.


2020 ◽  
Vol 861 ◽  
pp. 295-300
Author(s):  
Li Han ◽  
Yan Gao ◽  
Ying Kai Guo ◽  
Xing Gao ◽  
Wen He

Electron transport layer (ETL) plays an important role in improving the performance and stability of perovskite solar cells (PSCs). SnO2 is a good semiconductor material with high electromigration and wide band gap. TiO2 has the advantages of superior position of conducting band (CB), long electronic life and low preparation cost, so SnO2 and TiO2 are often used in ETL of PSCs. In this paper, the preparation progress of SnO2, TiO2 and SnO2/TiO2 composite ETL is reviewed.


Science ◽  
2020 ◽  
Vol 367 (6482) ◽  
pp. 1097-1104 ◽  
Author(s):  
Jixian Xu ◽  
Caleb C. Boyd ◽  
Zhengshan J. Yu ◽  
Axel F. Palmstrom ◽  
Daniel J. Witter ◽  
...  

Wide–band gap metal halide perovskites are promising semiconductors to pair with silicon in tandem solar cells to pursue the goal of achieving power conversion efficiency (PCE) greater than 30% at low cost. However, wide–band gap perovskite solar cells have been fundamentally limited by photoinduced phase segregation and low open-circuit voltage. We report efficient 1.67–electron volt wide–band gap perovskite top cells using triple-halide alloys (chlorine, bromine, iodine) to tailor the band gap and stabilize the semiconductor under illumination. We show a factor of 2 increase in photocarrier lifetime and charge-carrier mobility that resulted from enhancing the solubility of chlorine by replacing some of the iodine with bromine to shrink the lattice parameter. We observed a suppression of light-induced phase segregation in films even at 100-sun illumination intensity and less than 4% degradation in semitransparent top cells after 1000 hours of maximum power point (MPP) operation at 60°C. By integrating these top cells with silicon bottom cells, we achieved a PCE of 27% in two-terminal monolithic tandems with an area of 1 square centimeter.


Sign in / Sign up

Export Citation Format

Share Document