Understanding the fast crystallization kinetics of In–Sb–Te by using ultrafast calorimetry

CrystEngComm ◽  
2018 ◽  
Vol 20 (2) ◽  
pp. 159-163 ◽  
Author(s):  
Sen Mu ◽  
Yimin Chen ◽  
Hongbo Pan ◽  
Guoxiang Wang ◽  
Junqiang Wang ◽  
...  

The crystal growth rates of supercooled liquids In–Sb–Te can be well characterized by ultrafast DSC, and it benefits to the optimization for phase-change materials.

2018 ◽  
Vol 24 (S1) ◽  
pp. 1868-1869
Author(s):  
Victoriea L. Bird ◽  
Al J. Rise ◽  
Khim Karki ◽  
Daan Hein Alsem ◽  
Geoffrey H. Campbell ◽  
...  

2013 ◽  
Vol 19 (S2) ◽  
pp. 1156-1157
Author(s):  
M.K. Santala ◽  
B.W. Reed ◽  
S. Raoux ◽  
T. Topuria ◽  
T. LaGrange ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


1993 ◽  
Vol 58 (8) ◽  
pp. 1848-1854 ◽  
Author(s):  
Miroslav Karel ◽  
Jaroslav Nývlt

The kinetics of the crystallization of potassium sulfate has been determined using the MSMPR technique. Values of the nucleation and crystal growth rates evaluated from the experimental data are compared with the corresponding literature data.


2021 ◽  
Vol 135 ◽  
pp. 106094
Author(s):  
Narges Amini ◽  
Julian Pries ◽  
Yudong Cheng ◽  
Christoph Persch ◽  
Matthias Wuttig ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Luigi Coppola ◽  
Denny Coffetti ◽  
Sergio Lorenzi

The paper focuses on the evaluation of the rheological and mechanical performances of cement-based renders manufactured with phase-change materials (PCM) in form of microencapsulated paraffin for innovative and ecofriendly residential buildings. Specifically, cement-based renders were manufactured by incorporating different amount of paraffin microcapsules—ranging from 5% to 20% by weight with respect to binder. Specific mass, entrained or entrapped air, and setting time were evaluated on fresh mortars. Compressive strength was measured over time to evaluate the effect of the PCM addition on the hydration kinetics of cement. Drying shrinkage was also evaluated. Experimental results confirmed that the compressive strength decreases as the amount of PCM increases. Furthermore, the higher the PCM content, the higher the drying shrinkage. The results confirm the possibility of manufacturing cement-based renders containing up to 20% by weight of PCM microcapsules with respect to binder.


2018 ◽  
Vol 923 ◽  
pp. 56-60 ◽  
Author(s):  
Mochamad Chalid ◽  
Evana Yuanita ◽  
Ghiska Ramahdita ◽  
Jaka Fajar Fatriansyah

Impact Polypropylene Copolymer (IPC) is one of the PP type which is widely used. IPC was made with addition of ethylene in PP which decreases PP crystallinity. Many efforts have been made to improve the properties of PP crystallinity by addition of nucleating agents. In this study, we use Arenga Pinnata “Ijuk” fiber as PP nucleating agent. In order to determine the effect of “Ijuk” fiber as nucleating agents in kinetics aspect, we used DSC measurement based on Avrami equation. The results showed that the addition of ijuk decreases crystallizationhalf timeand dimension of crystal growth which indicate the effects of “Ijuk” fiber as a nucleating agent.


2006 ◽  
Vol 918 ◽  
Author(s):  
Matthias Wuttig ◽  
Wojciech Welnic ◽  
Ralf Detemple ◽  
Henning Dieker ◽  
Johannes Kalb ◽  
...  

AbstractPhase change materials possess a unique combination of properties which include a pronounced property contrast between the amorphous and crystalline state, i.e. a high electrical and optical contrast. In particular the latter observation is indicative for a considerable structural difference between the amorphous and crystalline state. At the same time the crystallization of the amorphous state proceeds on a fast time scale. This raises the question how structure, properties and kinetics are related in phase change alloys. It will be demonstrated that only a small group of covalent semiconductors with octahedral-like coordination has the required property combination. This is related to their thermodynamic properties which govern the kinetics of crystallization.


Sign in / Sign up

Export Citation Format

Share Document