A fast sol–gel synthesis leading to highly crystalline birnessites under non-hydrothermal conditions

2017 ◽  
Vol 46 (14) ◽  
pp. 4582-4588 ◽  
Author(s):  
S. Ziller ◽  
J. F. von Bülow ◽  
S. Dahl ◽  
M. Lindén

Manganese oxides from the compound family of layered birnessites have attracted interest for their use as cathode materials in Li-ion batteries, as supercapacitors, and as water oxidation catalysts.

2010 ◽  
Vol 195 (13) ◽  
pp. 4290-4296 ◽  
Author(s):  
Xian-Ming Liu ◽  
Zheng-Dong Huang ◽  
Seiwoon Oh ◽  
Peng-Cheng Ma ◽  
Philip C.H. Chan ◽  
...  

2014 ◽  
Vol 59 (23) ◽  
pp. 2875-2881 ◽  
Author(s):  
Xiaoli Zou ◽  
Xianhua Hou ◽  
Zhibo Cheng ◽  
Yanling Huang ◽  
Min Yue ◽  
...  

2013 ◽  
Vol 01 (04) ◽  
pp. 1340015
Author(s):  
WENJUAN HAO ◽  
HAN CHEN ◽  
YANHONG WANG ◽  
HANHUI ZHAN ◽  
QIANGQIANG TAN ◽  
...  

Li [ Li 0.2 Mn 0.56 Ni 0.16 Co 0.08] O 2 cathode materials for Li -ion batteries were synthesized by a facile sol–gel method followed by calcination at various temperatures (700°C, 800°C and 900°C). Lithium acetate dihydrate, manganese (II) acetate tetrahydrate, nickel (II) acetate tetrahydrate and cobalt (II) acetate tetrahydrate are employed as the metal precursors, and citric acid monohydrate as the chelating agent. For the obtained Li [ Li 0.2 Mn 0.56 Ni 0.16 Co 0.08] O 2 materials, the metal components existed in the form of Mn 4+, Ni 2+ and Co 3+, and their molar ratio was in good agreement with 0.56 : 0.16 : 0.08. The calcination temperature played an important role in the particle size, crystallinity and further electrochemical properties of the cathode materials. The Li [ Li 0.2 Mn 0.56 Ni 0.16 Co 0.08] O 2 material calcined at 800°C for 6 h showed the best electrochemical performances. Its discharge specific capacities cycled at 0.1 C, 0.5 C, 1 C and 2 C rates were 266.0 mAh g−1, 243.1 mAh g−1, 218.2 mAh g−1 and 192.9 mAh g−1, respectively. When recovered to 0.1 C rate, the discharge specific capacity was 260.2 mAh g−1 and the capacity loss is only 2.2%. This work demonstrates that the sol–gel method is a facile route to prepare high performance Li [ Li 0.2 Mn 0.56 Ni 0.16 Co 0.08] O 2 cathode materials for Li -ion batteries.


Membranes ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 109 ◽  
Author(s):  
Jadra Mosa ◽  
Jonh Fredy Vélez ◽  
Mario Aparicio

Organic/inorganic hybrid membranes that are based on GTT (GPTMS-TMES-TPTE) system while using 3-Glycidoxypropyl-trimethoxysilane (GPTMS), Trimethyletoxisilane (TMES), and Trimethylolpropane triglycidyl ether (TPTE) as precursors have been obtained while using a combination of organic polymerization and sol-gel synthesis to be used as electrolytes in Li-ion batteries. Self-supported materials and thin-films solid hybrid electrolytes that were doped with Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) were prepared. The hybrid network is based on highly cross-linked structures with high ionic conductivity. The dependency of the crosslinked hybrid structure and polymerization grade on ionic conductivity is studied. Ionic conductivity depends on triepoxy precursor (TPTE) and the accessibility of Li ions in the organic network, reaching a maximum ionic conductivity of 1.3 × 10−4 and 1.4 × 10−3 S cm−1 at room temperature and 60 °C, respectively. A wide electrochemical stability window in the range of 1.5–5 V facilitates its use as solid electrolytes in next-generation of Li-ion batteries.


2016 ◽  
Vol 42 (1) ◽  
pp. 1897-1902 ◽  
Author(s):  
Li Yang ◽  
Guoxi Xi ◽  
Tianjun Lou ◽  
Xinsheng Wang ◽  
Jingjing Wang ◽  
...  

2019 ◽  
Vol 9 (2) ◽  
pp. 3866-3873

Composites of {[(1-x-y) LiFe0.333Ni0.333 Co0.333] PO4}, xLi2FePO4F and yLiCoPO4system were synthesized using the sol-gel method. Stoichiometric weights of the mole-fraction of LiOH, FeCl2·4H2O and H3PO4, LiCl, Ni(NO3)2⋅6H2O, Co(Ac)2⋅4H2O, as starting materials of lithium, Iron, Nickel , and Cobalt, in 7 samples of the system, respectively. We exhibited Li1.167 Ni0.222 Co0.389 Fe0.388 PO4 is the best composition for cathode material in this study. Obviously, the used weight of cobalt in these samples is lower compared with LiCoO2 that is an advantage in view point of cost in this study. Charge-discharge haracteristics of the mentioned cathode materials were investigated by performing cycle tests in the range of 2.4–3.8 V (versus Li/Li+). Our results confirmed, although these kind systems can help for removing the disadvantage of cobalt which mainly is its cost and toxic, the performance of these kind systems are similar to the commercial cathode materials in Lithium Ion batteries (LIBs).


Sign in / Sign up

Export Citation Format

Share Document