scholarly journals Copper nanoparticles grafted on carbon microspheres as novel heterogeneous catalysts and their application for the reduction of nitrophenol and one-pot multicomponent synthesis of hexahydroquinolines

2018 ◽  
Vol 42 (2) ◽  
pp. 1092-1098 ◽  
Author(s):  
Tibor Pasinszki ◽  
Melinda Krebsz ◽  
Győző György Lajgut ◽  
Tünde Kocsis ◽  
László Kótai ◽  
...  

Carbon microsphere-supported Cu nanoparticles were fabricated, characterized, and applied for synthesis.

2019 ◽  
Vol 8 (5) ◽  
pp. 153
Author(s):  
N. S. Kaminwar ◽  
S. B. Patwari ◽  
Santosh P. Goskulwad ◽  
Santosh D. More ◽  
Sanjay K. Vyawahare ◽  
...  

Author(s):  
Kahdijah S. Alghamdi ◽  
Nesreen S.I. Ahmed ◽  
D. Bakhotmah ◽  
Mohamed Mokhtar

Chitosan decorated copper nanoparticles catalysts (CSCuNPs) were synthesized via reduction methods utilizing green protocol. The CSCuNPs catalysts were tested for the synthesis of quinoline derivatives utilizing one-pot multicomponent reaction (MCR) under ultrasonic irradiation. The best catalyst (Cu-CS-NPs) that provided good conversion reaction yield and high turnover frequency (TOF) was characterized using FTIR, TGA, XRD, TEM and XPS techniques. Generalization of the scope of the proposed catalytic process was studied using different aldehydes. Excellent products yield and high TOF in even shorter reaction time (~5 min) was attained. Recyclability performance of the catalyst over five times re-use without detectable loss in product yield was recorded. The current method is green process utilizing environmentally benign catalyst and considered to be promising sustainable protocol for the synthesis of fine chemicals.


Author(s):  
Kahdijah S. Alghamdi ◽  
Nesreen Ahmed ◽  
D. Bakhotmah ◽  
Mohamed Mokhtar M. Mostafa

Chitosan decorated copper nanoparticles catalysts (CSCuNPs) were synthesized via reduction methods utilizing green protocol. The CSCuNPs catalysts were tested for the synthesis of quinoline derivatives utilizing one-pot multicomponent reaction (MCR) under ultrasonic irradiation. The best catalyst (Cu-CS-NPs) that provided good conversion reaction yield and high turnover frequency (TOF) was characterized using FTIR, TGA, XRD, TEM and XPS techniques. Generalization of the scope of the proposed catalytic process was studied using different aldehydes. Excellent products yield and high TOF in even shorter reaction time (~5 min) was attained. Recyclability performance of the catalyst over five times re-use without detectable loss in product yield was recorded. The current method is green process utilizing environmentally benign catalyst and considered to be promising sustainable protocol for the synthesis of fine chemicals.


2021 ◽  
Vol 9 ◽  
Author(s):  
Immandhi Sai Sonali Anantha ◽  
Nagaraju Kerru ◽  
Suresh Maddila ◽  
Sreekantha B. Jonnalagadda

The synthesis of dihydropyridines, valuable molecules with diverse therapeutic properties, using eco-friendly heterogeneous catalysts as a green alternative received significant consideration. By selecting appropriate precursors, these compounds can be readily modified to induce the desired properties in the target product. This review focused on synthesising diverse dihydropyridine derivatives in single-pot reactions using magnetic, silica, and zirconium-based heterogeneous catalytic systems. The monograph describes preparation techniques for various catalyst materials in detail. It covers facile and benign magnetic, silica, zirconium-based, and ionic liquid catalysts, exhibiting significant efficacy and consistently facilitating excellent yields in short reaction times and in a cost-effective way. Most of the designated protocols employ Hantzsch reactions involving substituted aldehydes, active methylene compounds, and ammonium acetate. These reactions presumably follow Knoevenagel condensation followed by Michael addition and intra-molecular cyclisation. The multicomponent one-pot protocols using green catalysts and solvents have admirably increased the product selectivity and yields while minimising the reaction time. These sustainable catalyst materials retain their viability for several cycles reducing the expenditure are eco-friendly.


2016 ◽  
Vol 18 (4) ◽  
pp. 47-55 ◽  
Author(s):  
Kamila Żelechowska ◽  
Izabela Kondratowicz ◽  
Maria Gazda

Abstract Synthesis and characterization of the graphene hydrogels with three different metallic nanoparticles, that is Au, Ag and Cu, respectively is presented. Synthesized in a one-pot approach graphene hydrogels with embedded metallic nanoparticles were tested as heterogeneous catalysts in a model reaction of 4-nitrophenol reduction. The highest activity was obtained for graphene hydrogel with Cu nanoparticles and additional reaction of methylene blued degradation was evaluated using this system. The obtained outstanding catalytic activity arises from the synergistic effect of graphene and metallic nanoparticles. The hydrogel form of the catalyst benefits in the easiness in separation from the reaction mixture (for example using tweezers) and reusability.


2020 ◽  
Vol 9 (4) ◽  
pp. 1521-1528

A convenient and efficient one-pot three-component synthesis of 6-amino-4-aryl-5-cyano-3-methyl-1-phenyl-1, 4-dihydropyrano[2, 3-c] pyrazoles was achieved using copper nanoparticles grafted on carbon microsphere (Cu-NP/C) as a reusable heterogeneous catalyst. The synthesis of pyranopyarolzes was carried out under mild reaction conditions affording excellent yield of the corresponding products.


2019 ◽  
Vol 16 (2) ◽  
pp. 288-293
Author(s):  
Yogesh W. More ◽  
Sunil U. Tekale ◽  
Nitishkumar S. Kaminwar ◽  
László Kótai ◽  
Tibor Pasinszki ◽  
...  

Aim and Objective: The present study was performed with the aim to develop an efficient and environmentally benign protocol for the synthesis of biologically siginifcant 3, 4-dihydropyrano[c]chromenes using a new catalytic material. The protocol involves the use of a reusable, environment friendly materials and solvents with operational simplicity. Materials and Methods: Carbon microsphere supported copper nanoparticles (Cu-NP/C) prepared from loaded cation exchange resin were synthesized, characterized with well versed analytical techniques such as XRD, SEM and Raman spectroscopy and the synthesized material was used as a catalyst for the environmentally benign synthesis of 3,4-dihydropyrano[c]chromenes. Results: The formation of carbon microsphere supported copper nanoparticles (Cu-NP/C) prepared from loaded cation exchange resin was confirmed by XRD, SEM and Raman spectroscopy which was employed as a heterogeneous material for the synthesis of 3,4-dihydropyrano[c]chromenes. The products formed were characterized by the analysis of spectroscopic data - NMR, IR and mass. The safe catalytic system offers several advantages including operational simplicity, environmental friendliness, high yield, and reusability of catalyst and green chemical transformation. Conclusion: Herein we report an easy and efficient protocol for the one-pot synthesis of dihydropyrano[ c]chromenes using environmentally benign MCR approach in ethanol as the green solvent. The method developed herein constitutes a valuable addition to the existing methods for the synthesis of titled compounds.


2017 ◽  
Vol 3 (3) ◽  
pp. 227-234 ◽  
Author(s):  
Sunetra Jadhav ◽  
Ajinkya Patravale ◽  
Reshma Patil ◽  
Digambar Kumbhar ◽  
Vishram Karande ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document