catalytic material
Recently Published Documents


TOTAL DOCUMENTS

237
(FIVE YEARS 102)

H-INDEX

24
(FIVE YEARS 6)

2022 ◽  
Vol 23 (2) ◽  
pp. 733
Author(s):  
Rak-Hyun Jeong ◽  
Ji-Won Lee ◽  
Dong-In Kim ◽  
Seong Park ◽  
Ju-Won Yang ◽  
...  

Research on layered two-dimensional (2D) materials is at the forefront of material science. Because 2D materialshave variousplate shapes, there is a great deal of research on the layer-by-layer-type junction structure. In this study, we designed a composite catalyst with a dimension lower than two dimensions and with catalysts that canbe combined so that the band structures can be designed to suit various applications and cover for each other’s disadvantages. Among transition metal dichalcogenides, 1T-WS2 can be a promising catalytic material because of its unique electrical properties. Black phosphorus with properly controlled surface oxidation can act as a redox functional group. We synthesized black phosphorus that was properly surface oxidized by oxygen plasma treatment and made a catalyst for water quality improvement through composite with 1T-WS2. This photocatalytic activity was highly efficient such that the reaction rate constant k was 10.31×10−2 min−1. In addition, a high-concentration methylene blue solution (20 ppm) was rapidly decomposed after more than 10 cycles and showed photo stability. Designing and fabricating bandgap energy-matching nanocomposite photocatalysts could provide a fundamental direction in solving the future’s clean energy problem.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Paul Constantin Albu ◽  
Andreea Ferencz (Dinu) ◽  
Hussam Nadum Abdalraheem Al-Ani ◽  
Szidonia-Katalin Tanczos ◽  
Ovidiu Oprea ◽  
...  

The recovery of osmium from residual osmium tetroxide (OsO4) is a necessity imposed by its high toxicity, but also by the technical-economic value of metallic osmium. An elegant and extremely useful method is the recovery of osmium as a membrane catalytic material, in the form of nanoparticles obtained on a polymeric support. The subject of the present study is the realization of a composite membrane in which the polymeric matrix is the polypropylene hollow fiber, and the active component consists of the osmium nanoparticles obtained by reducing an alcoholic solution of osmium tetroxides directly on the polymeric support. The method of reducing osmium tetroxide on the polymeric support is based on the use of 10-undecenoic acid (10–undecylenic acid) (UDA) as a reducing agent. The osmium tetroxide was solubilized in t–butanol and the reducing agent, 10–undecenoic acid (UDA), in i–propanol, t–butanol or n–decanol solution. The membranes containing osmium nanoparticles (Os–NP) were characterized morphologically by the following: scanning electron microscopy (SEM), high-resolution SEM (HR–SEM), structurally: energy-dispersive spectroscopy analysis (EDAX), Fourier transform infrared (FTIR) spectroscopy. In terms of process performance, thermal gravimetric analysis was performed by differential scanning calorimetry (TGA, DSC) and in a redox reaction of an organic marker, p–nitrophenol (PNP) to p–aminophenol (PAP). The catalytic reduction reaction with sodium tetraborate solution of PNP to PAP yielded a constant catalytic rate between 2.04 × 10−4 mmol s–1 and 8.05 × 10−4 mmol s−1.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 109
Author(s):  
Sandra Rodríguez-Villanueva ◽  
Frank Mendoza ◽  
Alvaro A. Instan ◽  
Ram S. Katiyar ◽  
Brad R. Weiner ◽  
...  

We report the first direct synthesis of graphene on SiO2/Si by hot-filament chemical vapor deposition. Graphene deposition was conducted at low pressures (35 Torr) with a mixture of methane/hydrogen and a substrate temperature of 970 °C followed by spontaneous cooling to room temperature. A thin copper-strip was deposited in the middle of the SiO2/Si substrate as catalytic material. Raman spectroscopy mapping and atomic force microscopy measurements indicate the growth of few-layers of graphene over the entire SiO2/Si substrate, far beyond the thin copper-strip, while X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy showed negligible amounts of copper next to the initially deposited strip. The scale of the graphene nanocrystal was estimated by Raman spectroscopy and scanning electron microscopy.


Author(s):  
Алина Александровна Пономарева ◽  
Вера Евгеньевна Ситникова ◽  
Константин Алексеевич Цой

Экологические параметры энергетического оборудования важны с точки зрения минимизации негативного воздействия на окружающую среду. Интерметаллидные инфракрасные пористые беспламенные горелки являются новым поколением горелочных устройств с улучшенными характеристиками. Газовые горелки относятся к наиболее эффективным устройствам прямого преобразования теплоты горения в энергию инфракрасного излучения. Несмотря на улучшенные по сравнению с традиционными горелками экологические характеристики инфракрасных пористых горелок, при работе они могут выделять нежелательные и опасные продукты горения газовых смесей (или других топлив), особенно при переходных и высокомощных режимах. В этой работе были получены каталитические покрытия оксидных систем на основе церия с небольшим добавлением оксидов кремния. Осаждение каталитического материала на пористые интерметаллидные подложки фиксировалось с применением весового метода, оптической системы анализа и сканирующей электронной микроскопии, а изучение химической структуры - с помощью ИК-спектроскопии. Выявлено равномерное распределение покрытия по поверхности подложки и соответствие ИК-пиков химическому составу синтезированных систем. The environmental parameters of power equipment are important in terms of minimizing the negative impact on the environment. Intermetallic infrared porous flameless burners are a new generation of burners with improved performance. Gas burners are among the most efficient devices for direct conversion of combustion heat into infrared energy. Despite the improved environmental characteristics of infrared porous burners compared to traditional burners, during operation they can emit unwanted and hazardous combustion products of gas mixtures (or other fuels), especially during transient and high-power modes. In this work, catalytic coatings based on cerium-based oxide systems with a small addition of silicon oxides were obtained. The deposition of the catalytic material on porous intermetallic substrates was controlled using the gravimetric method, optical analysis system, and scanning electron microscopy, and its chemical structure was investigated using IR spectroscopy. The uniform distribution of the coating over the substrate surface and the correspondence of the IR peaks with the chemical composition of the synthesized systems were detected.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 56
Author(s):  
Peijie Ma ◽  
Ang Li ◽  
Lihua Wang ◽  
Kun Zheng

In situ environmental transmission electron microscope (ETEM) could provide intuitive and solid proof for the local structure and chemical evolution of materials under practical working conditions. In particular, coupled with atmosphere and thermal field, the behavior of nano catalysts could be directly observed during the catalytic reaction. Through the change of lattice structure, it can directly correlate the relationship between the structure, size and properties of materials in the nanoscale, and further directly and accurately, which is of great guiding value for the study of catalysis mechanism and the optimization of catalysts. As an outstanding catalytic material in the application of methane reforming, molybdenum oxide (MoO3)-based materials and its deoxidation process were studied by in situ ETEM method. The corresponding microstructures and components evolution were analyzed by diffraction, high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectrum (EELS) techniques. MoO3 had a good directional deoxidation process accompanied with the process of nanoparticles crushing and regrowth in hydrogen (H2) and thermal field. However, in the absence of H2, the samples would exhibit different structural evolution.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yixuan Liu ◽  
Xixi Liu ◽  
Mingrui Li ◽  
Ye Meng ◽  
Jie Li ◽  
...  

The massive burning of a large amount of fossil energy has caused a lot of serious environmental issues (e.g., air pollution and climate change), urging people to efficiently explore and valorize sustainable alternatives. Biomass is being deemed as the only organic carbon-containing renewable resource for the production of net-zero carbon emission fuels and fine chemicals. Regarding this, the selective transformation of high-oxygen biomass feedstocks by catalytic transfer hydrogenation (CTH) is a very promising strategy to realize the carbon cycle. Among them, the important Meerwein-Ponndorf-Verley (MPV) reaction is believed to be capable of replacing the traditional hydrogenation strategy which generally requires high-pressure H2 and precious metals, aiming to upgrade biomass into downstream biochemical products and fuels. Employing bifunctional heterogeneous catalysts with both acidic and basic sites is needed to catalyze the MPV reaction, which is the key point for domino/cascade reaction in one pot that can eliminate the relevant complicated separation/purification step. Zirconium (Zr) and hafnium (Hf), belonging to transition metals, rich in reserves, can demonstrate similar catalytic efficiency for MPV reaction as that of precious metals. This review introduced the application of recyclable heterogeneous non-noble Zr/Hf-containing catalysts with acid-base bifunctionality for CTH reaction using the safe liquid hydrogen donor. The corresponding catalysts were classified into different types including Zr/Hf-containing metal oxides, supported materials, zeolites, metal-organic frameworks, metal-organic hybrids, and their respective pros and cons were compared and discussed comprehensively. Emphasis was placed on evaluating the bifunctionality of catalytic material and the key role of the active site corresponding to the structure of the catalyst in the MPV reaction. Finally, a concise summary and prospect were also provided centering on the development and suggestion of Zr/Hf-containing acid-base bifunctional catalysts for CTH.


Author(s):  
Dayang Yu ◽  
Yan Yu ◽  
Jiawei Tang ◽  
Xiuqing Li ◽  
Chao Ke ◽  
...  

2021 ◽  
Vol 2129 (1) ◽  
pp. 012101
Author(s):  
Nur Hudawiyah Abu Hassan ◽  
Nisa Syukrina Mat Natsir ◽  
Siti Noramira Ab Rahman ◽  
Farah Diana Mohd Daud ◽  
Nur Ayuni Jamal ◽  
...  

Abstract Azo dye is widely used in the textile industry since it is cost effective and simple to use. However, it becomes a continuous source of environmental pollution due to its carcinogenicity and toxicity. Various methods had been used to remove the azo dye in solution. One of the famous and repeatedly used is Fenton process. The Fenton’s process is one of the advanced oxidation process where iron catalysed hydrogen peroxide to generate hydroxyl radical. Treating azo dyes in solution requires a catalyst to enhance the process of degradation. Herein, high entropy alloy (HEA) has been proposed as a catalytic material to enhance the performance of Fenton process for azo dye degradation. HEA has been reported as a promising catalyst due to its high surface area. The higher the number of active sites, the higher the rate of azo dye degradation as more active sites are available for adsorption of azo dyes. The results have shown that HEA can be used as a catalyst to fasten the Fenton’s reaction since the degradation time is proven to be shorter in the presence of HEA. The method derived from the result of this study will contribute in treating azo dyes for wastewater management in Fenton process.


ChemCatChem ◽  
2021 ◽  
Author(s):  
Dmitry Antonovich Svintsitskiy ◽  
Nikolai A. Sokovikov ◽  
Elena M. Slavinskaya ◽  
Elizaveta A. Fedorova ◽  
Andrei I. Boronin

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1419
Author(s):  
Shuting Liang ◽  
Chaowei Wang ◽  
Fengjiao Li ◽  
Gang Song

Room-temperature liquid metal is a very ideal material for the design of catalytic materials. At low temperatures, the liquid metal enters the liquid state. It provides an opportunity to utilize the liquid phase in the catalysis, which is far superior to the traditional solid-phase catalyst. Aiming at the low performance and narrow application scope of the existing single-phase liquid metal catalyst, this paper proposed a type of liquid metal/metal oxide core-shell composite multi-metal catalyst. The Ga2O3 core-shell heterostructure was formed by chemical modification of liquid metals with different nano metals Cu/W/Mo/Ni, and it was applied to photocatalytic degrading organic contaminated raw liquor. The effects of different metal species on the rate of catalytic degradation were explored. The selectivity and stability of the LM/MO core-shell composite catalytic material were clarified, and it was found that the Ni-LM catalyst could degrade methylene blue and Congo red by 84% and 74%, respectively. The catalytic mechanism and charge transfer mechanism were revealed by combining the optical band gap value. Finally, we provided a theoretical basis for the further development of liquid metal photocatalytic materials in the field of new energy environments.


Sign in / Sign up

Export Citation Format

Share Document