scholarly journals Engineered ferritin nanocages as natural contrast agents in magnetic resonance imaging

RSC Advances ◽  
2017 ◽  
Vol 7 (55) ◽  
pp. 34892-34900 ◽  
Author(s):  
V. Nandwana ◽  
S.-R. Ryoo ◽  
S. Kanthala ◽  
A. Kumar ◽  
A. Sharma ◽  
...  

Here we report the development of a “natural” MRI contrast agent with tunable Fe loading and a magnetic core for magnetic resonance imaging.

2016 ◽  
Vol 7 (14) ◽  
pp. 2531-2541 ◽  
Author(s):  
Chunhua Guo ◽  
Ling Sun ◽  
Wenchuan She ◽  
Ning Li ◽  
Lei Jiang ◽  
...  

An amphiphilic dendronized heparin–gadolinium conjugate self-assembles into a nanoscale system by a combination of the features of the nanoparticle, dendrimer and heparin. The nanoscale system demonstrates great potential as an efficient and safe MRI contrast agent.


2021 ◽  
Vol 11 (17) ◽  
pp. 8222
Author(s):  
Shanti Marasini ◽  
Huan Yue ◽  
Adibehalsadat Ghazanfari ◽  
Son Long Ho ◽  
Ji Ae Park ◽  
...  

Surface-coating polymers contribute to nanoparticle-based magnetic resonance imaging (MRI) contrast agents because they can affect the relaxometric properties of the nanoparticles. In this study, polyaspartic acid (PASA)-coated ultrasmall Gd2O3 nanoparticles with an average particle diameter of 2.0 nm were synthesized using the one-pot polyol method. The synthesized nanoparticles exhibited r1 and r2 of 19.1 and = 53.7 s−1mM−1, respectively, (r1 and r2 are longitudinal and transverse water–proton spin relaxivities, respectively) at 3.0 T MR field, approximately 5 and 10 times higher than those of commercial Gd-chelate contrast agents, respectively. The T1 and T2 MR images could be obtained due to an appreciable r2/r1 ratio of 2.80, indicating their potential as a dual-modal T1 and T2 MRI contrast agent.


2018 ◽  
Vol 59 (9) ◽  
pp. 1074-1081
Author(s):  
Dimitrios Mitsouras ◽  
Ming Tao ◽  
Margreet R de Vries ◽  
Kaspar Trocha ◽  
Oscar R Miranda ◽  
...  

Background Non-invasive monitoring of autologous vein graft (VG) bypass grafts is largely limited to detecting late luminal narrowing. Although magnetic resonance imaging (MRI) delineates vein graft intima, media, and adventitia, which may detect early failure, the scan time required to achieve sufficient resolution is at present impractical. Purpose To study VG visualization enhancement in vivo and delineate whether a covalently attached MRI contrast agent would enable quicker longitudinal imaging of the VG wall. Material and Methods Sixteen 12-week-old male C57BL/6J mice underwent carotid interposition vein grafting. The inferior vena cava of nine donor mice was treated with a gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA)-based contrast agent, with control VGs labeled with a vehicle. T1-weighted (T1W) MRI was performed serially at postoperative weeks 1, 4, 12, and 20. A portion of animals was sacrificed for histopathology following each imaging time point. Results MRI signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were significantly higher for treated VGs in the first three time points (1.73 × higher SNR, P = 0.0006, and 5.83 × higher CNR at the first time point, P = 0.0006). However, MRI signal enhancement decreased consistently in the study period, to 1.29 × higher SNR and 2.64 × higher CNR, by the final time point. There were no apparent differences in graft morphometric analyses in Masson’s trichrome-stained sections. Conclusion A MRI contrast agent that binds covalently to the VG wall provides significant increase in T1W MRI signal with no observed adverse effects in a mouse model. Further optimization of the contrast agent to enhance its durability is required.


RSC Advances ◽  
2020 ◽  
Vol 10 (23) ◽  
pp. 13872-13878 ◽  
Author(s):  
Yining Yan ◽  
Lei Ding ◽  
Lin Liu ◽  
Murad M. A. Abualrejal ◽  
Hongda Chen ◽  
...  

Hyaluronic acid functionalized NaGdF4 nanodots were synthesized and evaluated as an active tumor-targeting magnetic resonance imaging (MRI) contrast agent.


Author(s):  
Alex J. Barker ◽  
Brant Cage ◽  
Stephen Russek ◽  
Ruchira Garg ◽  
Robin Shandas ◽  
...  

Two potential molecular imaging vectors are investigated for material properties and magnetic resonance imaging (MRI) contrast improvement. Monodisperse magnetite (Fe3O4) nanocrystals ranging in size from 7 to 22 nm are solvothermally synthesized by thermolysis of Fe(III) acetylacetonate (Fe(AcAc)3) both with and without the use of heptanoic acid (HA) as a capping ligand. For the resulting Fe3O4 nanocrystals, X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), and superconducting quantum interference device magnetometry (SQUID) is used to identify the average particle size, monodispersity, crystal symmetry, and magnetic properties of the ensembles as a function of time. The characterization study indicates that the HA synthesis route at 3 hours produced nanoparticles with the greatest magnetic anisotropy (15.8 × 104 J/m3). The feasibility of Fe8 single molecule magnets (SMMs) as a potential MRI contrast agent is also examined. SQUID magnetization measurements are used to determine anisotropy and saturation of the potential agents. The effectiveness of the Fe3O4 nanocrystals and Fe8 as potential MRI molecular probes is evaluated by MRI contrast improvement using 1.5 mL phantoms dispersed in de-ionized water. Results indicate that the magnetically optimized Fe3O4 nanocrystals and Fe8 SMMs hold promise for use as contrast agents based on the reported MRI images and solution phase T1/T2 shortening.


Sign in / Sign up

Export Citation Format

Share Document