polyaspartic acid
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 55)

H-INDEX

32
(FIVE YEARS 5)

Bioengineered ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 1459-1475
Author(s):  
Lei Han ◽  
Hong Liu ◽  
Huajun Fu ◽  
Yugen Hu ◽  
Weili Fang ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhe Wang ◽  
Zihuai Zhou ◽  
Jiayan Fan ◽  
Leiqing Zhang ◽  
Zhixin Zhang ◽  
...  

AbstractDemineralization of hard tooth tissues leads to dental caries, which cause health problems and economic burdens throughout the world. A biomimetic mineralization strategy is expected to reverse early dental caries. Commercially available anti-carious mineralizing products lead to inconclusive clinical results because they cannot continuously replenish the required calcium and phosphate resources. Herein, we prepared a mineralizing film consisting of hydroxypropylmethylcellulose (HPMC) and polyaspartic acid-stabilized amorphous calcium phosphate (PAsp-ACP) nanoparticles. HPMC which contains multiple hydroxyl groups is a film-forming material that can be desiccated to form a dry film. In a moist environment, this film gradually changes into a gel. HPMC was used as the carrier of PAsp-ACP nanoparticles to deliver biomimetic mineralization. Our results indicated that the hydroxyl and methoxyl groups of HPMC could assist the stability of PAsp-ACP nanoparticles and maintain their biomimetic mineralization activity. The results further demonstrated that the bioinspired mineralizing film induced the early mineralization of demineralized dentin after 24 h with increasing mineralization of the whole demineralized dentin (3–4 µm) after 72–96 h. Furthermore, these results were achieved without any cytotoxicity or mucosa irritation. Therefore, this mineralizing film shows promise for use in preventive dentistry due to its efficient mineralization capability. Graphical Abstract


2021 ◽  
Vol 13 (21) ◽  
pp. 12170
Author(s):  
Yangyang Wang ◽  
Shaofeng Li ◽  
Xiaoshu Wang ◽  
Jianfeng Xu ◽  
Tongtong Li ◽  
...  

To evaluate the efficacy of biochelators for phytoremediation of cadmium (Cd), effects of biochelators (humic acid, HA; polyaspartic acid, PASP; rhamnolipid, RLs) and synthetic chelator (sodium tripolyphosphate, STPP) on the growth, accumulation, and antioxidant index of Cd were investigated in Iris sibirica L. The results indicated that the addition of HA increased the dry weight of leaves and stems, and the addition of PASP, RLs, and STPP increased the growth of leaves but inhibited the growth of stems. The determination of Cd accumulation indicated that HA decreased the content of Cd in all tissues, while the addition of PASP, RLs, and STPP increased the accumulation of Cd in stems and roots. In addition, the determination of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities indicated that the treatment of PASP and RLs increased the activities of antioxidant enzymes, which might be beneficial to the resistance of Cd for Iris sibirica L. Overall, these results indicated that biochelators may improve the phytoremediation efficacy of Iris sibirica L. on Cd polluted paddy field. Among the tested chelators, PASP exhibited the best comprehensive efficacy and the highest commercial potential.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yamin Cheng ◽  
Xinyu Guo ◽  
Xiaowei Zhao ◽  
Yufeng Wu ◽  
Zhongyan Cao ◽  
...  

AbstractGiven the special performance of nanosilica with its small size, large specific surface area and high surface activity, nanosilica containing reactive amino group (denoted as SiO2–NH2) and polysuccinimide were allowed to take part in polymerization reaction to afford SiO2–NH2 modified polyaspartic acid (denoted as SiO2–NH2/PASP), a potential polymer scale inhibitor with good water solubility for industrial circulating water. The scale inhibition performance of the as-prepared SiO2–NH2/PASP was evaluated by static scale inhibition test; and its scale inhibition mechanism was explored by means of scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Results indicated that SiO2–NH2/PASP exhibits excellent scale inhibition performance against CaSO4 and CaCO3 at very low concentrations (optimum scale inhibition rate of 100% and 68%, respectively), and the presence of 5 mg/L of SiO2–NH2/PASP greatly increases the inhibition efficiency of CaSO4 and CaCO3 scale by 21% and 53%, obviously higher than that of pure PASP.


2021 ◽  
Vol 11 (17) ◽  
pp. 8222
Author(s):  
Shanti Marasini ◽  
Huan Yue ◽  
Adibehalsadat Ghazanfari ◽  
Son Long Ho ◽  
Ji Ae Park ◽  
...  

Surface-coating polymers contribute to nanoparticle-based magnetic resonance imaging (MRI) contrast agents because they can affect the relaxometric properties of the nanoparticles. In this study, polyaspartic acid (PASA)-coated ultrasmall Gd2O3 nanoparticles with an average particle diameter of 2.0 nm were synthesized using the one-pot polyol method. The synthesized nanoparticles exhibited r1 and r2 of 19.1 and = 53.7 s−1mM−1, respectively, (r1 and r2 are longitudinal and transverse water–proton spin relaxivities, respectively) at 3.0 T MR field, approximately 5 and 10 times higher than those of commercial Gd-chelate contrast agents, respectively. The T1 and T2 MR images could be obtained due to an appreciable r2/r1 ratio of 2.80, indicating their potential as a dual-modal T1 and T2 MRI contrast agent.


2021 ◽  
Author(s):  
Zhe Wang ◽  
Zihuai Zhou ◽  
Jiayan Fan ◽  
Leiqing Zhang ◽  
Zhixin Zhang ◽  
...  

Abstract Demineralization of tooth hard tissues leads to dental caries, which causes health problem and economic burden throughout the world. Biomimetic mineralization strategy is expected to reverse initial dental caries. Commercially available mineralizing anti-carious products lead to indefinite clinical results because they could not continuously replenish calcium and phosphate resources. Herein, we prepared a novel mineralizing film (NMF) consisting of hydroxypropylmethylcellulose (HPMC) and polyaspartic acid-stabilized amorphous calcium phosphate (PAsp-ACP) nanoparticles. HPMC containing multiple hydroxyls is a gel-forming material that could be either desiccated to be a dry film or gradually changed into gel in moist milieu. The HPMC was, for the first time, used as a carrier of PAsp-ACP nanoparticles for delivering biomimetic mineralization in moist milieu. Our results indicated the hydroxyls and methoxyls of HPMC could assist the stability of PAsp-ACP nanoparticles and maintain their bioactivity of mineralization. The results further demonstrated that the NMF bioinspired the early mineralization of demineralized dentin at 24 hrs and the heavy mineralization of the whole demineralized dentin (3-4 µm) at 72-96 hrs without any cytotoxicity and mucosa irritation. Therefore, the NMF might be promising mineralizing strategy for preventive dentistry with efficient mineralization capability.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 802
Author(s):  
Yongsheng Zhou ◽  
Jie Wang ◽  
Yan Fang

Polyaspartic acid (PASP)-based green scale inhibitor has great potential application in water treatment. Here, we first synthesized PASP in ionic liquid. Then, an effective PASP-based green scale inhibitor was synthesized by ring-opening graft modification of PASP with both aspartic acid (ASP) and monoethanolamine (MEA). Its chemical composition was characterized by gel chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), and 1H nuclear magnetic resonance (1H NMR). Scale inhibition efficiency was measured by static scale inhibition tests. The results showed that the new PASP-based scale inhibitor has high scale inhibition to both CaCO3 and Ca3(PO4)2. When the concentration was increased to 2 mg/l, the inhibition efficiency of the new PASP-based scale inhibitor was 99% for CaCO3, while when the concentration was raised to only 4 mg/l, its inhibition efficiency increased to 100% for Ca3(PO4)2. Scanning electronic microscopy (SEM) and X-ray diffraction (XRD) were used to analyze the changes of crystal structure for CaCO3 and Ca3(PO4)2 after adding the new PASP-based scale inhibitor. The crystal size of CaCO3 and Ca3(PO4)2 became smaller and the crystal form became amorphous after adding the modified PASPs compared with adding pure PASP. Moreover, the modified PASP showed good biodegradation performance.


Sign in / Sign up

Export Citation Format

Share Document