scholarly journals Tailored sol–gel immobilized lipase preparates for the enzymatic kinetic resolution of heteroaromatic alcohols in batch and continuous flow systems

RSC Advances ◽  
2017 ◽  
Vol 7 (83) ◽  
pp. 52977-52987 ◽  
Author(s):  
Mădălina Elena Moisă ◽  
Cristina Georgiana Spelmezan ◽  
Cristina Paul ◽  
Judith Hajnal Bartha-Vári ◽  
László Csaba Bencze ◽  
...  

The EKR of some heteroaromatic secondary ethanols with tailored sol–gel immobilized lipases in batch and continuous-flow reactors was studied. The productivity in continuous-flow mode is higher than in batch mode.


Biocatalysis ◽  
2017 ◽  
Vol 3 (1) ◽  
Author(s):  
Juliana Christina Thomas ◽  
Martha Daniela Burich ◽  
Pamela Taisline Bandeira ◽  
Alfredo Ricardo Marques de Oliveira ◽  
Leandro Piovan

AbstractEnzymatic kinetic resolution reactions are a well-established way to achieve optically active compounds. When enzymatic reactions are combined to continuous-flow methodologies, other benefits are added, including reproducibility, optimized energy use, minimized waste generation, among others. In this context, we herein report a case study involving lipase-mediated transesterification by acylation and deacylation reactions of secondary alcohols/esters in batch and continuous-flow modes. Acylation reactions were performed with high values of enantiomeric excess (72 up to >99%) and enantioselectivity (E > 200) for both batch and continuous-flow modes. On the other hand, for deacylation reactions using n-butanol as nucleophile, enatiomeric excess ranged between 38 to >99% and E from 6 to >200 were observed for batch mode. For deacylation reactions in continuous-flow mode, results were disappointing, as in some cases, very low or no conversion was observed. Enantiomeric excess ranged from 16 to >99% and enantioselectivity from 5 to >200 were observed. In terms of productivity, continuous-flow mode reactions were superior in both strategies (acylation: r from 1.1 up to 18.1-fold higher, deacylation: 2.8 up to 7.4- fold higher in continuous-flow than in batch mode).



Catalysts ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 438 ◽  
Author(s):  
Zsófia Molnár ◽  
Emese Farkas ◽  
Ágnes Lakó ◽  
Balázs Erdélyi ◽  
Wolfgang Kroutil ◽  
...  

Immobilization of transaminases creates promising biocatalysts for production of chiral amines in batch or continuous-flow mode reactions. E. coli cells containing overexpressed transaminases of various selectivities and hollow silica microspheres as supporting agent were immobilized by an improved sol-gel process to produce immobilized transaminase biocatalysts with suitable stability and mechanical properties for continuous-flow applications. The immobilized cell-based transaminase biocatalyst proved to be durable and easy-to-use in kinetic resolution of four racemic amines 1a–d. The batch and continuous-flow mode kinetic resolutions with transaminase biocatalyst of opposite stereopreference provided access to both enantiomers of the corresponding amines. By using the most suitable immobilized transaminase biocatalysts, this study describes the first transaminase-based approach for the production of both pure enantiomers of 1-(3,4-dimethoxyphenyl)ethan-1-amine 1d.



Author(s):  
Mary Bayana ◽  
A. John Blacker ◽  
Adam D. Clayton ◽  
Katherine E. Jolley ◽  
Ricardo Labes ◽  
...  

Abstract Despite growing applications being reported both in academia and industry, continuous flow chemistry remains a relatively untaught field across most chemistry undergraduate courses. This is particularly true in laboratory practical classes, where it is often deemed simpler to carry out synthetic reactions in traditional batch mode using round-bottomed flasks. Herein, we report the development of an undergraduate project that utilises cheap and readily available materials to construct continuous flow reactors. The students compare the performance of different types of reactors and conditions in a biphasic selective acetylation of a symmetrical diamine. Throughout the investigation, the students can vary multiple parameters as they optimise the reaction, thus actively learning and readjusting them based on their improved understanding. The experiments give the students an appreciation of continuous flow techniques in comparison to batch.



Author(s):  
Kian Donnelly ◽  
Marcus Baumann

AbstractContinuous flow photochemistry as a field has witnessed an increasing popularity over the last decade in both academia and industry. Key drivers for this development are safety, practicality as well as the ability to rapidly access complex chemical structures. Continuous flow reactors, whether home-built or from commercial suppliers, additionally allow for creating valuable target compounds in a reproducible and automatable manner. Recent years have furthermore seen the advent of new energy efficient LED lamps that in combination with innovative reactor designs provide a powerful means to increasing both the practicality and productivity of modern photochemical flow reactors. In this review article we wish to highlight key achievements pertaining to the scalability of such continuous photochemical processes. Graphical abstract



Author(s):  
Ludivine van den Biggelaar ◽  
Patrice Soumillion ◽  
Damien P. Debecker

ω-Transaminases have been immobilized on macrocellular silica monoliths and used as heterogeneous biocatalysts in a continuous flow mode enantioselective transamination reaction. The support was prepared by a sol-gel method based on emulsion-templating. The enzyme was immobilized on the structured silica monoliths both by adsorption, and by covalent grafting using amino-functionalized silica monoliths and glutaraldehyde as a coupling agent. A simple reactor set-up based on the use of a heat-shrinkable Teflon tube is presented and successfully used for the continuous flow kinetic resolution of a chiral amine, 4-bromo-α-methylbenzylamine. The porous structure of the supports ensures effective mass transfer and the reactor works in the plug flow regime without preferential flow paths. When immobilized in the monolith and used in the flow reactor, transaminases retain their activity and their enantioselectivity. The solid biocatalyst is also shown to be stable both on stream and during storage. These essential features pave the way to the successful development of an environmentally friendly process for chiral amines production.



Author(s):  
Flóra Nagy ◽  
Kinga Szabó ◽  
Péter Bugovics ◽  
Gábor Hornyánszky

An efficient and easy-to-perform method was developed for covalent immobilization of lipase from Burkholderia cepacia (Lipase PS) on hollow silica microspheres (M540) by bisepoxide activation. For immobilization, various bisepoxides of different length, rigidity and hydrophobicity in their linkers were applied to activate the amino groups on the M540 support. Effect of the individual bisepoxides on the catalytic performance of the immobilized Lipase PS was studied by using lipase-catalyzed kinetic resolution (KR) of racemic 1-phenylethanol (rac-1) with vinyl acetate in batch mode. Catalytic activity, enantiomer selectivity, recyclability and thermal stability of the new immobilized Lipase PS biocatalysts were investigated. The optimal enzyme / support ratio with the support activated by the most efficient bisepoxide, i.e. poly(ethylene glycol) diglycidyl ether (PDE), was 1:5. The most efficient Lipase PS on PDE activated M540 showed an almost five fold higher biocatalytic activity value (rbatch = 42.8 U/g) with enhanced selectivity (ee(R)-2 = 99.1 %) to the free form of Lipase PS (rbatch = 9.0 U/g; ee(R)-2 = 98.9 %). The Lipase PS on PDE-M540 was compared to a commercially available immobilized Lipase PS biocatalyst (Lipobond Lipase PS) and also applied in a packed-bed enzyme reactor operated in continuous-flow mode, where the optimal temperature of M540-PDE-PS reached the 70 °C, while the optimum for Lipobond Lipase PS was 50 °C.



Author(s):  
Ludivine van den Biggelaar ◽  
Patrice Soumillion ◽  
Damien P. Debecker

ω-Transaminases have been immobilized on macrocellular silica monoliths and used as heterogeneous biocatalysts in a continuous flow mode enantioselective transamination reaction. The support was prepared by a sol-gel method based on emulsion templating. The enzyme was immobilized on the structured silica monoliths both by adsorption, and by covalent grafting using amino-functionalized silica monoliths and glutaraldehyde as a coupling agent. A simple reactor set-up based on the use of a heat-shrinkable Teflon tube is presented and successfully used for the continuous flow kinetic resolution of a chiral amine, 4-bromo-α-methylbenzylamine. The porous structure of the supports ensures effective mass transfer and the reactor works in the plug flow regime without preferential flow paths. When immobilized in the monolith and used in the flow reactor, transaminases retain their activity and their enantioselectivity. The solid biocatalyst is also shown to be stable both on stream and during storage. These essential features pave the way to the successful development of an environmentally friendly process for chiral amines production.



2012 ◽  
Vol 14 (1) ◽  
pp. 38-54 ◽  
Author(s):  
Charlotte Wiles ◽  
Paul Watts


Sign in / Sign up

Export Citation Format

Share Document