scholarly journals Multiwall-carbon-nanotube/cellulose composite fibers with enhanced mechanical and electrical properties by cellulose grafting

RSC Advances ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 5678-5684 ◽  
Author(s):  
Shaobo Zhang ◽  
Feiran Zhang ◽  
Yanfei Pan ◽  
Liping Jin ◽  
Bo Liu ◽  
...  

MWCNT-cellulose/cellulose composite fibers with enhanced mechanical and conducting properties were preparedviafacilitating the dispersion of MWCNTs in fibers.

2012 ◽  
Vol 626 ◽  
pp. 306-310
Author(s):  
Anne Zulfia ◽  
Sutopo ◽  
Bangkit Indriyana ◽  
Muhammad Ekaditya Albar ◽  
Saeful Rohman

The properties of polypropylene can be improved by addition of multiwall carbon nanotube (MWCNT). This research focuses on material design of composite based on polymer matrix and carbon including MWCNT to improve mechanical and electrical properties of composites according to the requirement for bipolar plate material. It is found that the effect of small addition of MWCNT and Cu have been increasing electrical conductivity up to 15.62 S/cm while tensile and flexural strengths increase to 14.97 MPa and 31.78 MPa respectively.


2003 ◽  
Vol 3 (6) ◽  
pp. 535-539 ◽  
Author(s):  
M. C. Weisenberger ◽  
E. A. Grulke ◽  
D. Jacques ◽  
A T. Rantell ◽  
R. Andrewsa

2021 ◽  
Vol 11 (6) ◽  
pp. 2580
Author(s):  
Mariana M. Silva ◽  
Paulo E. Lopes ◽  
Yilong Li ◽  
Petra Pötschke ◽  
Fernando N. Ferreira ◽  
...  

Polylactic acid (PLA) is a bio-based, biodegradable polymer that presents high potential for biomedical and sensing applications. Ongoing works reported in the literature concern mainly applications based on 3D printing, while textile applications are hindered by the limited flexibility of PLA and its composite filaments. In the present work, PLA/multiwall carbon nanotube (MWCNT) composite filaments were produced with enhanced flexibility and electrical conductivity, which may be applied on a textile structure. A biodegradable plasticizer was incorporated in the nanocomposites, aiming at improving MWCNT dispersion and increasing the flexibility of the filaments. Filaments were produced with a range of compositions and their morphology was characterized as well as their thermal, thermomechanical, and electrical properties. Selected compositions were tested for sensing activity using saturated acetone vapor, demonstrating a suitable response and potential for the application in fabrics with sensing capacity.


Sign in / Sign up

Export Citation Format

Share Document