composite fibers
Recently Published Documents


TOTAL DOCUMENTS

816
(FIVE YEARS 216)

H-INDEX

62
(FIVE YEARS 10)

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 89
Author(s):  
Xin Hu ◽  
Jiayang He ◽  
Li Zhu ◽  
Siti Machmudah ◽  
Wahyudiono Wahyudiono ◽  
...  

Polyvinylpyrrolidone (PVP) is used in a wide variety of applications because of its unique chemical and physical features, including its biocompatibility and low toxicity. In this study, hollow PVP/silver nanoparticle (PVP/Ag NP) composite fibers were synthesized. Stable, spherical Ag NPs, with an average size of 14.4 nm, were produced through a facile sonochemical reduction method. A small amount of starch as a potent reducing and stabilizing agent was used during the reduction of Ag ions to Ag NPs. The fabricated Ag NPs were then added to a 10 wt% PVP-dichloromethane (DCM) solution, which was utilized as an electrospinning feed solution under a dense carbon dioxide (CO2) environment at 313 K and 5 MPa and an applied voltage of 15 kV. The dense CO2 enabled rapid extraction of DCM from the PVP-Ag NPs-DCM solution, which was then dissolved into PVP/Ag NPs, resulting in a hollow structure. Scanning electron microscopy, Fourier-transform infrared (FT-iR) spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses, and thermogravimetric analysis (TGA), were used to characterize the electrospinning products.


2021 ◽  
Author(s):  
Zaara Ali ◽  
Eylem Asmatulu

Abstract Purpose Carbon fiber, Kevlar® fiber, and glass fiber are the most widely used polymer prepregs in manufacturing high-performance composites to produce vital parts for a wide range of applications. The production of carbon and Kevlar® fibers is an energy-intensive process, requiring 198–595 MJ to produce 1 kg of virgin carbon fiber. However, chemically recycling these expired prepregs takes only 38.4 MJ/kg, which could be significantly sustainable. The work described in this study involves an array of experiments involving acid treatment of outdated prepreg composite fibers to study its effects and reclaim the fibers for future applications.Method The experiments were carried out at two different temperatures: 25°C and also 60°C. Sulfuric acid, nitric acid, acetone, and distilled water were used in the process, with varying treatment times of 60, 120, 240, 360, and 420 seconds. The recovered fibers were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Result The optimum treatment time and temperature were different for all three types of fibers. Initially, the glass fiber yielded promising results at room temperature and with a minimal 120-s processing time. Carbon fiber treatment was successful at 60°C with a 420-s treatment time. However, some surface damage was observed in the Kevlar® fiber at 60°C. Conclusion The chemical recycling process is the most sustainable, energy- and cost-efficient approach compared to all other available recycling processes. Also, it is possible to recover much cleaner fibers with the weave intact with an acid treatment and solvent-based recovery.


2021 ◽  
pp. 004051752110620
Author(s):  
Yongchao Duo ◽  
Xiaoming Qian ◽  
Baobao Zhao ◽  
Longfei Gao ◽  
He Bai ◽  
...  

Bicomponent spunbond hydroentanglement technology can break the interface between the two components by physical extrusion and shearing, thereby realizing the green and efficient production of high-strength microfiber nonwoven materials. Herein, we report a soft and fluffy bicomponent spunbond hydroentanglement nonwoven material using high-shrinkage polyester/polyamide 6 (HSPET/PA6) as the bicomponent. HSPET/PA6 hollow segmented pie composite fibers with different volume ratios were prepared by spunbond technology, the HSPET and PA6 segments were alternately arranged, and the interface was flat. The composite fibers were split by heat treatment. The dry heat shrinkage rates of the composite fibers were 8.45% (50/50) and 10.57% (70/30), and the boiling water shrinkage rates were 10.02% (50/50) and 12.27% (70/30). HSPET/PA6 hollow segmented pie microfiber nonwovens were prepared by hydroentanglement technology. After heat treatment, the fibers of nonwovens were further split and the HSPET fibers curled, giving the nonwovens a fluffy characteristic. By comparing the properties of HSPET/PA6 after heat treatment, the shrinkage effect of the water bath was obviously better than that of dry heat, and the split degree of fibers reached 81.97% (50/50) and 84.65% (70/30). Compared with polyester/PA6 nonwovens, the softness of HSPET/PA6 nonwovens increased by 45.1% (50/50) and 49.3% (70/30) after boiling water shrinkage. At the same time, the mechanical properties of HSPET/PA6 nonwovens were also improved. The successful fabrication of HSPET/PA6 microfiber nonwovens provides a new method for enhancing the softness of bicomponent spunbond hydroentanglement nonwovens.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1484
Author(s):  
Songmei Wu

Graphene has shown the world its fascinating properties, including high specific surface area, high conductivity, and extraordinary mechanical properties, which enable graphene to be a competent candidate for electrode materials. However, some challenges remain in the real applications of graphene-based electrodes, such as continuous preparation of graphene fibers with highly ordered graphene sheets as well as strong interlayer interactions. The combination of graphene with other materials or functional guests hence appears as a more promising pathway via post-treatment and in situ hybridism to produce composite fibers. This article firstly provides a full account of the classification of graphene-based composite fiber electrodes, including carbon allotropy, conductive polymer, metal oxide and other two-dimensional (2D) materials. The preparation methods of graphene-based composite fibers are then discussed in detail. The context further demonstrates the performance optimization of graphene-based composite fiber electrodes, involving microstructure design and surface modification, followed by the elaboration of the application of graphene-based composite fiber electrodes in supercapacitors. Finally, we present the remaining challenges that exist to date in order to provide meaningful guidelines in the development process and prospects of graphene-based composite fiber electrodes.


2021 ◽  
Vol 21 ◽  
pp. 100528
Author(s):  
J.Q. Feng ◽  
Y.H. Liu ◽  
J.H. Sui ◽  
A.N. He ◽  
W.X. Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document