A general route to the synthesis of layer-by-layer structured metal organic framework/graphene oxide hybrid films for high-performance supercapacitor electrodes

2017 ◽  
Vol 5 (32) ◽  
pp. 16865-16872 ◽  
Author(s):  
Dongbo Yu ◽  
Liang Ge ◽  
Xinlai Wei ◽  
Bin Wu ◽  
Jin Ran ◽  
...  

A promising strategy is demonstrated for the syntheses of metal organic framework/graphene oxide hybrid films with highly ordered layer-by-layer architecture, and the derived hybrids exhibit remarkable energy storage performances.

2021 ◽  
Author(s):  
Dharshini Mohanadas ◽  
Muhammad Amirul Aizat Mohd Abdah ◽  
Nur Hawa Nabilah Azman ◽  
Thahira B.S.A. Ravoof ◽  
Yusran Sulaiman

Abstract A novel poly(3,4-ethylenedioxythiophene)-reduced graphene oxide/copper-based metal-organic framework (PrGO/HKUST-1) has been successfully fabricated by incorporating electrochemically synthesized poly(3,4-ethylenedioxythiophene)-reduced graphene oxide (PrGO) and hydrothermally synthesized copper-based metal-organic framework (HKUST-1). The field emission scanning microscopy (FESEM) and elemental mapping analysis revealed an even distribution of poly(3,4-ethylenedioxythiophene) (PEDOT), reduced graphene oxide (rGO) and HKUST-1. The crystalline structure and vibration modes of PrGO/HKUST-1 was validated utilizing X-ray diffraction (XRD) as well as Raman spectroscopy, respectively. A remarkable specific capacitance (360.5 F/g) was obtained for PrGO/HKUST-1 compared to HKUST-1 (103.1 F/g), PrGO (98.5 F/g) and PEDOT (50.8 F/g) using KCl/PVA as a gel electrolyte. Moreover, PrGO/HKUST-1 composite with the longest charge/discharge time displayed excellent specific energy (21.0 Wh/kg), specific power (479.7 W/kg) and outstanding cycle life (95.5%) over 4000 cycles. Thus, the PrGO/HKUST-1 can be recognized as a promising energy storage material.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dharshini Mohanadas ◽  
Muhammad Amirul Aizat Mohd Abdah ◽  
Nur Hawa Nabilah Azman ◽  
Thahira B. S. A. Ravoof ◽  
Yusran Sulaiman

AbstractA novel poly(3,4-ethylenedioxythiophene)-reduced graphene oxide/copper-based metal–organic framework (PrGO/HKUST-1) has been successfully fabricated by incorporating electrochemically synthesized poly(3,4-ethylenedioxythiophene)-reduced graphene oxide (PrGO) and hydrothermally synthesized copper-based metal–organic framework (HKUST-1). The field emission scanning microscopy (FESEM) and elemental mapping analysis revealed an even distribution of poly(3,4-ethylenedioxythiophene) (PEDOT), reduced graphene oxide (rGO) and HKUST-1. The crystalline structure and vibration modes of PrGO/HKUST-1 were validated utilizing X-ray diffraction (XRD) as well as Raman spectroscopy, respectively. A remarkable specific capacitance (360.5 F/g) was obtained for PrGO/HKUST-1 compared to HKUST-1 (103.1 F/g), PrGO (98.5 F/g) and PEDOT (50.8 F/g) using KCl/PVA as a gel electrolyte. Moreover, PrGO/HKUST-1 composite with the longest charge/discharge time displayed excellent specific energy (21.0 Wh/kg), specific power (479.7 W/kg) and an outstanding cycle life (95.5%) over 4000 cycles. Thus, the PrGO/HKUST-1 can be recognized as a promising energy storage material.


2021 ◽  
Vol 4 (02) ◽  
pp. 5-24
Author(s):  
Fatemeh Pourbahman ◽  
Mohsen Zeeb ◽  
Amirhossein Monzavi ◽  
Zahra Khodadadi ◽  
Seyed Saied Homami

A nanohybrid material termed graphene oxide/metal-organic framework-74/Fe3O4/polytyramine (GO/MOF-74/Fe3O4­/PTy) was fabricated and applied in magnetic dispersive micro-solid phase extraction (MD-µ-SPE) coupled with high performance liquid chromatography (HPLC) for simultaneous determination of fluoroquinolones compounds including, ofloxacin, ciprofloxacin, lomefloxacin, enrofloxacin and sperfloxacin in egg samples. The GO/MOF-74/Fe3O4/PTy nanocomposite was fabricated through an in situ synthesis of MOF-74 in the presence of magnetic GO and followed with an oxidative polymerization of tyramine using horsedish peroxide (HRP) enzyme. The modifier agents improved the merits of the nanoporous sorbent. Extraction protocols based on GO/MOF nanocomposites have various benefit such as, the high stability, the tunable porosity, the fast mast transfer and reasonable enrichment factor. The fabricated material was characterized via energy dispersive x-ray analysis (EDX), the scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and the x-ray diffraction (XRD). The calibration curves revealed linearity (0.992 ≤ r2 ≤ 0.997) in the ranges of 1.0-475.0, 0.5-350.0, 0.5-350.0, 0.5-375.0 and 1.5-300.0 ng mL-1 with limit of detections (LODs, S/N=3) of 0.3, 0.1, 0.2, 0.1 and 0.4 ng mL-1 for ofloxacin, ciprofloxacin, lomefloxacin, enrofloxacin and sperfloxacin, respectively. The intra-assay (≤7.7%, n = 9) and inter-assay (≤7.0%, n = 9) precisions along with accuracy less than 9.0% were obtained.


Sign in / Sign up

Export Citation Format

Share Document