Human-level blood cell counting on lens-free shadow images exploiting deep neural networks

The Analyst ◽  
2018 ◽  
Vol 143 (22) ◽  
pp. 5380-5387 ◽  
Author(s):  
DaeHan Ahn ◽  
JiYeong Lee ◽  
SangJun Moon ◽  
Taejoon Park

In-line holographic microscopes paved the way for realizing portable cell counting systems using deep neural networks.

Sensors ◽  
2016 ◽  
Vol 16 (11) ◽  
pp. 1836 ◽  
Author(s):  
Xiwei Huang ◽  
Yu Jiang ◽  
Xu Liu ◽  
Hang Xu ◽  
Zhi Han ◽  
...  

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Wenxiu Zhao ◽  
Haibo Yu ◽  
Yangdong Wen ◽  
Hao Luo ◽  
Boliang Jia ◽  
...  

Counting the number of red blood cells (RBCs) in blood samples is a common clinical diagnostic procedure, but conventional methods are unable to provide the size and other physical properties...


2017 ◽  
Vol 19 (12) ◽  
pp. 124014 ◽  
Author(s):  
Xi Liu ◽  
Mei Zhou ◽  
Song Qiu ◽  
Li Sun ◽  
Hongying Liu ◽  
...  

Author(s):  
Gary Smith ◽  
Jay Cordes

Computer software, particularly deep neural networks and Monte Carlo simulations, are extremely useful for the specific tasks that they have been designed to do, and they will get even better, much better. However, we should not assume that computers are smarter than us just because they can tell us the first 2000 digits of pi or show us a street map of every city in the world. One of the paradoxical things about computers is that they can excel at things that humans consider difficult (like calculating square roots) while failing at things that humans consider easy (like recognizing stop signs). They can’t pass simple tests like the Winograd Schema Challenge because they do not understand the world the way humans do. They have neither common sense nor wisdom. They are our tools, not our masters.


Sign in / Sign up

Export Citation Format

Share Document