Adaptive and automatic red blood cell counting method based on microscopic hyperspectral imaging technology

2017 ◽  
Vol 19 (12) ◽  
pp. 124014 ◽  
Author(s):  
Xi Liu ◽  
Mei Zhou ◽  
Song Qiu ◽  
Li Sun ◽  
Hongying Liu ◽  
...  
Lab on a Chip ◽  
2021 ◽  
Author(s):  
Wenxiu Zhao ◽  
Haibo Yu ◽  
Yangdong Wen ◽  
Hao Luo ◽  
Boliang Jia ◽  
...  

Counting the number of red blood cells (RBCs) in blood samples is a common clinical diagnostic procedure, but conventional methods are unable to provide the size and other physical properties...


2015 ◽  
Vol 69 (12) ◽  
pp. 1372-1380 ◽  
Author(s):  
Qingli Li ◽  
Mei Zhou ◽  
Hongying Liu ◽  
Yiting Wang ◽  
Fangmin Guo

2016 ◽  
Vol 22 (2) ◽  
pp. 176-185
Author(s):  
Suzanne Smith ◽  
Phophi Madzivhandila ◽  
René Sewart ◽  
Ureshnie Govender ◽  
Holger Becker ◽  
...  

Disposable, low-cost microfluidic cartridges for automated blood cell counting applications are presented in this article. The need for point-of-care medical diagnostic tools is evident, particularly in low-resource and rural settings, and a full blood count is often the first step in patient diagnosis. Total white and red blood cell counts have been implemented toward a full blood count, using microfluidic cartridges with automated sample introduction and processing steps for visual microscopy cell counting to be performed. The functional steps within the microfluidic cartridge as well as the surrounding instrumentation required to control and test the cartridges in an automated fashion are described. The results recorded from 10 white blood cell and 10 red blood cell counting cartridges are presented and compare well with the results obtained from the accepted gold-standard flow cytometry method performed at pathology laboratories. Comparisons were also made using manual methods of blood cell counting using a hemocytometer, as well as a commercially available point-of-care white blood cell counting system. The functionality of the blood cell counting microfluidic cartridges can be extended to platelet counting and potential hemoglobin analysis, toward the implementation of an automated, point-of-care full blood count.


1976 ◽  
Vol 24 (1) ◽  
pp. 396-401 ◽  
Author(s):  
H M Shapiro ◽  
E R Schildkraut ◽  
R Curbelo ◽  
C W Laird ◽  
B Turner ◽  
...  

A multiparameter flow cytophotometer was used to count and classify fixed human blood cells fluorochromed with a mixture of ethidium bromide (EB), brilliant sulfaflavine and a blue fluorescent stilbene disulfonic acid derivative (LN). The system measures light scattered by the cells and absorption at 420 nm for all cells. In addition, nuclear EB fluorescence (540 leads to 610 nm) and cytoplasmic fluorescence from LN (366 leads to 470 nm), brilliant sulfaflavine (420 leads to 520 nm) and EB exicted by energy transfer from LN (366 leads to 610 nm) are measured for all nucleated cells. This information is sufficient to perform red and white blood cell counts and to classify leukocytes as lymphocytes, monocytes, basophils, eosinophils or neutrophils. Light scattering and/or nuclear and cytoplasmic fluorescence values may be further analyzed to obtain the ratio of immature to mature neutrophils. Counts produced by the system are in reasonable agreement with those obtained by electronic cells counting and examination of Wright's-stained blood smears; some discrepancies appear to be due to systematic errors in the manual counting method.


Sign in / Sign up

Export Citation Format

Share Document