Approaching the maximum capacity of nickel-rich LiNi0.8Co0.1Mn0.1O2 cathodes by charging to high-voltage in a non-flammable electrolyte of propylene carbonate and fluorinated linear carbonates

2019 ◽  
Vol 55 (9) ◽  
pp. 1256-1258 ◽  
Author(s):  
Hieu Quang Pham ◽  
Eui-Hyung Hwang ◽  
Young-Gil Kwon ◽  
Seung-Wan Song

We report for the first time a promising approach to achieve the maximum capacity of LiNi0.8Co0.1Mn0.1O2 cathodes in a non-flammable electrolyte for safe and high-energy density lithium-ion and lithium metal batteries.

2020 ◽  
Vol 8 (18) ◽  
pp. 9137-9145
Author(s):  
Nahid Kaisar ◽  
Anupriya Singh ◽  
Po-Yu Yang ◽  
Yu-Ting Chen ◽  
Shenghan Li ◽  
...  

Because it has the highest specific capacity and lowest reduction potential among the elements, as well as a low density, lithium (Li) metal has been the most practical anode material for high energy density lithium-ion batteries.


2019 ◽  
Vol 7 (8) ◽  
pp. 4110-4118 ◽  
Author(s):  
Chunyang Li ◽  
Wenzhuo Wu ◽  
Shuaishuai Zhang ◽  
Liang He ◽  
Yusong Zhu ◽  
...  

A proof-of-concept lithium ion capacitor comprising LiMn2O4 nanorods as the cathode, a nitrogen-rich biomass carbon anode and a stable alkaline–neutral electrolyte was designed and fabricated.


Author(s):  
Ingeborg Treu Røe ◽  
Sondre K. Schnell

Dendrite growth on the lithium metal anode still obstructs a widespread commercialization of high energy density lithium metal batteries. In this work, we investigate how the crystal structure of the...


Author(s):  
Sha Fu ◽  
Lan-Lan Zuo ◽  
Peng-Sheng Zhou ◽  
Xue-Jiao Liu ◽  
Qiang Ma ◽  
...  

Lithium metal batteries (LMBs) as the next generation promising high energy density alternatives among electrochemical storage technologies have received worldwide attention. However, the incompatibility between metallic lithium and traditional liquid...


2022 ◽  
pp. 134637
Author(s):  
Chengwei Ma ◽  
Chengcai Liu ◽  
Yuanxing Zhang ◽  
Xinyu Zhang ◽  
Zhikun Zhao ◽  
...  

2015 ◽  
Vol 3 (16) ◽  
pp. 8246-8249 ◽  
Author(s):  
Yang Liu ◽  
Yinping Qin ◽  
Zhe Peng ◽  
Jingjing Zhou ◽  
Changjin Wan ◽  
...  

Hexamethylene diisocyanate can chemically react with the onium ion produced by the oxidation of propylene carbonate andin situgenerate a novel interfacial layer that is stable at high potential.


2020 ◽  
Vol 26 ◽  
pp. 73-82 ◽  
Author(s):  
Qingshuai Xu ◽  
Xianfeng Yang ◽  
Mumin Rao ◽  
Dingchang Lin ◽  
Kai Yan ◽  
...  

2021 ◽  
Author(s):  
Thushan Pathirana ◽  
Dmitrii Rakov ◽  
Fangfang Chen ◽  
Maria Forsyth ◽  
Robert Kerr ◽  
...  

<p>ABSTRACT </p><p>Cell formation of lithium-ion cells impacts the evolution of the solid electrolyte interphase (SEI) and the cell cycle stability. Lithium metal anodes are an important step in the development of high energy density batteries owing to the high theoretical specific capacity of lithium metal. However, most lithium metal battery research has used a conventional lithium-ion formation protocol; this is time consuming, costly and does not account for the different properties of the lithium metal electrode. Here, we have used a recently reported promising phosphonium bis(fluorosulfonyl)imide ionic liquid electrolyte coupled with an NMC622 high areal capacity cathode (>3.5 mAh/cm2) to investigate the effect of cell formation rates. A faster formation protocol comprised of a pulsed 1.25C current decreased the formation time by 56 % and gave a 38 % greater capacity retention after 50 cycles when compared to formation at C/20. Electrochemical impedance spectroscopy measurements showed that the fast formation gave rise to a lower-resistance SEI. Column-like lithium deposits with reduced porous lithium domains between the particles were observed using scanning electron microscope imaging. To underline the excellent performance of these high energy-density cells, a 56 % greater stack specific energy was achieved compared to the analogous graphite-based lithium-ion cell chemistries. </p>


Sign in / Sign up

Export Citation Format

Share Document