A high-voltage aqueous lithium ion capacitor with high energy density from an alkaline–neutral electrolyte

2019 ◽  
Vol 7 (8) ◽  
pp. 4110-4118 ◽  
Author(s):  
Chunyang Li ◽  
Wenzhuo Wu ◽  
Shuaishuai Zhang ◽  
Liang He ◽  
Yusong Zhu ◽  
...  

A proof-of-concept lithium ion capacitor comprising LiMn2O4 nanorods as the cathode, a nitrogen-rich biomass carbon anode and a stable alkaline–neutral electrolyte was designed and fabricated.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Chen Li ◽  
Xiong Zhang ◽  
Kai Wang ◽  
Xianzhong Sun ◽  
Yanan Xu ◽  
...  

AbstractLithium-ion capacitors are envisaged as promising energy-storage devices to simultaneously achieve a large energy density and high-power output at quick charge and discharge rates. However, the mismatched kinetics between capacitive cathodes and faradaic anodes still hinder their practical application for high-power purposes. To tackle this problem, the electron and ion transport of both electrodes should be substantially improved by targeted structural design and controllable chemical doping. Herein, nitrogen-enriched graphene frameworks are prepared via a large-scale and ultrafast magnesiothermic combustion synthesis using CO2 and melamine as precursors, which exhibit a crosslinked porous structure, abundant functional groups and high electrical conductivity (10524 S m−1). The material essentially delivers upgraded kinetics due to enhanced ion diffusion and electron transport. Excellent capacities of 1361 mA h g−1 and 827 mA h g−1 can be achieved at current densities of 0.1 A g−1 and 3 A g−1, respectively, demonstrating its outstanding lithium storage performance at both low and high rates. Moreover, the lithium-ion capacitor based on these nitrogen-enriched graphene frameworks displays a high energy density of 151 Wh kg−1, and still retains 86 Wh kg−1 even at an ultrahigh power output of 49 kW kg−1. This study reveals an effective pathway to achieve synergistic kinetics in carbon electrode materials for achieving high-power lithium-ion capacitors.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3586
Author(s):  
Qi An ◽  
Xingru Zhao ◽  
Shuangfu Suo ◽  
Yuzhu Bai

Lithium-ion capacitors (LICs) have been widely explored for energy storage. Nevertheless, achieving good energy density, satisfactory power density, and stable cycle life is still challenging. For this study, we fabricated a novel LIC with a NiO-rGO composite as a negative material and commercial activated carbon (AC) as a positive material for energy storage. The NiO-rGO//AC system utilizes NiO nanoparticles uniformly distributed in rGO to achieve a high specific capacity (with a current density of 0.5 A g−1 and a charge capacity of 945.8 mA h g−1) and uses AC to provide a large specific surface area and adjustable pore structure, thereby achieving excellent electrochemical performance. In detail, the NiO-rGO//AC system (with a mass ratio of 1:3) can achieve a high energy density (98.15 W h kg−1), a high power density (10.94 kW kg−1), and a long cycle life (with 72.1% capacity retention after 10,000 cycles). This study outlines a new option for the manufacture of LIC devices that feature both high energy and high power densities.


2019 ◽  
Vol 55 (9) ◽  
pp. 1256-1258 ◽  
Author(s):  
Hieu Quang Pham ◽  
Eui-Hyung Hwang ◽  
Young-Gil Kwon ◽  
Seung-Wan Song

We report for the first time a promising approach to achieve the maximum capacity of LiNi0.8Co0.1Mn0.1O2 cathodes in a non-flammable electrolyte for safe and high-energy density lithium-ion and lithium metal batteries.


2019 ◽  
Vol 7 (34) ◽  
pp. 19909-19921 ◽  
Author(s):  
Ronghua Wang ◽  
Qiannan Zhao ◽  
Weikang Zheng ◽  
Zongling Ren ◽  
Xiaolin Hu ◽  
...  

A 4.5 V “dual carbon” LIC device is constructed based on all nitrogen doped graphene nanostructures. It could achieve an ultrahigh energy density of 187.9 W h kg−1 at a high power density of 2250 W kg−1 due to the alleviating kinetic mismatch.


2020 ◽  
Vol 8 (31) ◽  
pp. 15373-15398 ◽  
Author(s):  
Gemeng Liang ◽  
Vanessa K. Peterson ◽  
Khay Wai See ◽  
Zaiping Guo ◽  
Wei Kong Pang

This paper highlights current research progress and future prospects of high-voltage spinel LiNi0.5Mn1.5O4 cathode for next-generation high-enegy-density lithium-ion batteries.


2021 ◽  
Author(s):  
Ping Zhang ◽  
Shiyou Li ◽  
Xiaohong Wei ◽  
Chun-Lei Li ◽  
Shujuan Meng ◽  
...  

Lithium-ion batteries with high-energy density are a hot spot in current research, and the 5 V class of high-voltage LiNi0.5Mn1.5O4 (LNMO) cathode material attracts widespread attention because of its high...


Sign in / Sign up

Export Citation Format

Share Document