scholarly journals Molecular chemistry approaches for tuning the properties of two-dimensional transition metal dichalcogenides

2018 ◽  
Vol 47 (17) ◽  
pp. 6845-6888 ◽  
Author(s):  
Simone Bertolazzi ◽  
Marco Gobbi ◽  
Yuda Zhao ◽  
Claudia Backes ◽  
Paolo Samorì

A variety of molecular chemistry approaches are currently investigated for tailoring the physico-chemical properties of ultrathin transition metal dichalcogenides towards novel hybrid multifunctional materials and devices.

Author(s):  
Aniceto B. Maghirang ◽  
Zhi-Quan Huang ◽  
Rovi Angelo B. Villaos ◽  
Chia-Hsiu Hsu ◽  
Liang-Ying Feng ◽  
...  

Abstract Ultrathin Janus two-dimensional (2D) materials are attracting intense interest currently. Substitutional doping of 2D transition metal dichalcogenides (TMDs) is of importance for tuning and possible enhancement of their electronic, physical and chemical properties toward industrial applications. Using systematic first-principles computations, we propose a class of Janus 2D materials based on the monolayers MX2 (M = V, Nb, Ta, Tc, or Re; X = S, Se, or Te) with halogen (F, Cl, Br, or I) or pnictogen (N, P, As, Sb, or Bi) substitution. Nontrivial phases are obtained on pnictogen substitution of group VB (V, Nb, or Ta), whereas for group VIIB (Tc or Re), the nontrivial phases are obtained for halogen substitution. Orbital analysis shows that the nontrivial phase is driven by the splitting of M-dyz and M-dxz orbitals. Our study demonstrates that the Janus 2D materials have the tunability and suitability for synthesis under various conditions.


ACS Nano ◽  
2021 ◽  
Author(s):  
Miao Zhang ◽  
Martina Lihter ◽  
Tzu-Heng Chen ◽  
Michal Macha ◽  
Archith Rayabharam ◽  
...  

Author(s):  
Sai Manoj Gali ◽  
David Beljonne

Transition Metal Dichalcogenides (TMDCs) are emerging as promising two-dimensional (2D) materials. Yet, TMDCs are prone to inherent defects such as chalcogen vacancies, which are detrimental to charge transport. Passivation of...


ACS Nano ◽  
2021 ◽  
Author(s):  
Hope Bretscher ◽  
Zhaojun Li ◽  
James Xiao ◽  
Diana Yuan Qiu ◽  
Sivan Refaely-Abramson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document