Combined Healing and Doping of Transition Metal Dichalcogenides Through Molecular Functionalization

Author(s):  
Sai Manoj Gali ◽  
David Beljonne

Transition Metal Dichalcogenides (TMDCs) are emerging as promising two-dimensional (2D) materials. Yet, TMDCs are prone to inherent defects such as chalcogen vacancies, which are detrimental to charge transport. Passivation of...

2019 ◽  
Vol 116 (42) ◽  
pp. 20844-20849 ◽  
Author(s):  
Cong Su ◽  
Zongyou Yin ◽  
Qing-Bo Yan ◽  
Zegao Wang ◽  
Hongtao Lin ◽  
...  

Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-CmH2m+1NH2, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS2, 1T′-MoTe2, WTe2, WSe2, TaS2, and NbSe2). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP’s lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H2 annealing, and organic solvents, but can be removed by certain organic acids.


Nanoscale ◽  
2021 ◽  
Author(s):  
Zihao He ◽  
Xingyao Gao ◽  
Di Zhang ◽  
Ping Lu ◽  
Xuejing Wang ◽  
...  

Two-dimensional (2D) materials with robust ferromagnetic behavior have attracted great interest because of their potential applications in next-generation nanoelectronic devices. Aside from graphene and transition metal dichalcogenides, Bi-based layered oxide...


2021 ◽  
Author(s):  
Mubashir A. Kharadi ◽  
Gul Faroz A. Malik ◽  
Farooq A. Khanday

2D materials like transition metal dichalcogenides, black phosphorous, silicene, graphene are at the forefront of being the most potent 2D materials for optoelectronic applications because of their exceptional properties. Several application-specific photodetectors based on 2D materials have been designed and manufactured due to a wide range and layer-dependent bandgaps. Different 2D materials stacked together give rise to many surprising electronic and optoelectronic phenomena of the junctions based on 2D materials. This has resulted in a lot of popularity of 2D heterostructures as compared to the original 2D materials. This chapter presents the progress of optoelectronic devices (photodetectors) based on 2D materials and their heterostructures.


RSC Advances ◽  
2015 ◽  
Vol 5 (23) ◽  
pp. 17572-17581 ◽  
Author(s):  
Hongsheng Liu ◽  
Nannan Han ◽  
Jijun Zhao

Monolayer transition metal dichalcogenides (TMDs) stand out in two-dimensional (2D) materials due to their potential applications in future microelectronic and optoelectronic devices.


Nanoscale ◽  
2017 ◽  
Vol 9 (48) ◽  
pp. 19124-19130 ◽  
Author(s):  
Lili Zhang ◽  
Chenyu Wang ◽  
Xue-Lu Liu ◽  
Tao Xu ◽  
Mingsheng Long ◽  
...  

As one of the most important family members of two-dimensional (2D) materials, the growth and damage-free transfer of transition metal dichalcogenides (TMDs) play crucial roles in their future applications.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7590
Author(s):  
Luca Seravalli ◽  
Matteo Bosi

Two-dimensional (2D) materials such as graphene, transition metal dichalcogenides, and boron nitride have recently emerged as promising candidates for novel applications in sensing and for new electronic and photonic devices. Their exceptional mechanical, electronic, optical, and transport properties show peculiar differences from those of their bulk counterparts and may allow for future radical innovation breakthroughs in different applications. Control and reproducibility of synthesis are two essential, key factors required to drive the development of 2D materials, because their industrial application is directly linked to the development of a high-throughput and reliable technique to obtain 2D layers of different materials on large area substrates. Among various methods, chemical vapour deposition is considered an excellent candidate for this goal thanks to its simplicity, widespread use, and compatibility with other processes used to deposit other semiconductors. In this review, we explore the chemical vapour deposition of MoS2, considered one of the most promising and successful transition metal dichalcogenides. We summarize the basics of the synthesis procedure, discussing in depth: (i) the different substrates used for its deposition, (ii) precursors (solid, liquid, gaseous) available, and (iii) different types of promoters that favour the growth of two-dimensional layers. We also present a comprehensive analysis of the status of the research on the growth mechanisms of the flakes.


RSC Advances ◽  
2020 ◽  
Vol 10 (65) ◽  
pp. 39455-39467
Author(s):  
Yalan Yan ◽  
Shuang Ding ◽  
Xiaonan Wu ◽  
Jian Zhu ◽  
Dengman Feng ◽  
...  

Transition-metal dichalcogenides (TMDs) have become one of the recent frontiers and focuses in two-dimensional (2D) materials fields thanks to their superior electronic, optical, and photoelectric properties.


2021 ◽  
Author(s):  
Arunima Singh ◽  
Manjari Jain ◽  
Saswata Bhattacharya

Two-dimensional (2D) materials viz. transition metal dichalcogenides (TMD) and transition metal oxides (TMO) offer a platform that allows creation of heterostructures with a variety of properties. The optoelectronic industry has...


2021 ◽  
Author(s):  
Stefan Renato Kachel ◽  
Pierre-Martin Dombrowski ◽  
Tobias Breuer ◽  
Michael Gottfried ◽  
Gregor Witte

Hybrid systems of two-dimensional (2D) materials such as transition metal dichalcogenides (TMDCs) and organic semiconductors (OSCs) have become subject of great interest for future device architectures. Although OSC-TMDC hybrid systems...


Sign in / Sign up

Export Citation Format

Share Document