scholarly journals Correction: Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage

2018 ◽  
Vol 11 (10) ◽  
pp. 3055-3055 ◽  
Author(s):  
Turgut M. Gür

Correction for ‘Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage’ by Turgut M. Gür, Energy Environ. Sci., 2018, DOI: 10.1039/c8ee01419a.

2018 ◽  
Vol 11 (10) ◽  
pp. 2696-2767 ◽  
Author(s):  
Turgut M. Gür

Large scale storage technologies are vital to increase the share of renewable electricity in the global energy mix.


2019 ◽  
Author(s):  
Farshid Salimijazi ◽  
Erika Parra ◽  
Buz Barstow

AbstractThe availability of renewable energy technologies is increasing dramatically across the globe thanks to their growing maturity. However, large scale electrical energy storage and retrieval will almost certainly be a required in order to raise the penetration of renewable sources into the grid. No present energy storage technology has the perfect combination of high power and energy density, low financial and environmental cost, lack of site restrictions, long cycle and calendar lifespan, easy materials availability, and fast response time. Engineered electroactive microbes could address many of the limitations of current energy storage technologies by enabling rewired carbon fixation, a process that spatially separates reactions that are normally carried out together in a photosynthetic cell and replaces the least efficient with non-biological equivalents. If successful, this could allow storage of renewable electricity through electrochemical or enzymatic fixation of carbon dioxide and subsequent storage as carbon-based energy storage molecules including hydrocarbon and non-volatile polymers at high efficiency. In this article we compile performance data on biological and non-biological component choices for rewired carbon fixation systems and identify pressing research and engineering challenges.


2021 ◽  
Author(s):  
Mirai Ohara ◽  
A. Shahul Hameed ◽  
Kei Kubota ◽  
Akihiro Katogi ◽  
Kuniko Chihara ◽  
...  

K-ion batteries (KIBs) are promising for large-scale electrical energy storage owing to the abundant resources and the electrochemical specificity of potassium. Among the positive electrode materials for KIBs, vanadium-based polyanionic...


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Mingguang Wu ◽  
Wei Ni ◽  
Jin Hu ◽  
Jianmin Ma

Abstract Several emerging energy storage technologies and systems have been demonstrated that feature low cost, high rate capability, and durability for potential use in large-scale grid and high-power applications. Owing to its outstanding ion conductivity, ultrafast Na-ion insertion kinetics, excellent structural stability, and large theoretical capacity, the sodium superionic conductor (NASICON)-structured insertion material NaTi2(PO4)3 (NTP) has attracted considerable attention as the optimal electrode material for sodium-ion batteries (SIBs) and Na-ion hybrid capacitors (NHCs). On the basis of recent studies, NaTi2(PO4)3 has raised the rate capabilities, cycling stability, and mass loading of rechargeable SIBs and NHCs to commercially acceptable levels. In this comprehensive review, starting with the structures and electrochemical properties of NTP, we present recent progress in the application of NTP to SIBs, including non-aqueous batteries, aqueous batteries, aqueous batteries with desalination, and sodium-ion hybrid capacitors. After a thorough discussion of the unique NASICON structure of NTP, various strategies for improving the performance of NTP electrode have been presented and summarized in detail. Further, the major challenges and perspectives regarding the prospects for the use of NTP-based electrodes in energy storage systems have also been summarized to offer a guideline for further improving the performance of NTP-based electrodes.


Author(s):  
B.J. Davidson ◽  
I. Glendenning ◽  
R.D. Harman ◽  
A.B. Hart ◽  
B.J. Maddock ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6272
Author(s):  
Candra Saigustia ◽  
Sylwester Robak

Poland has had a total of 70 mines, but now more than half of them is out of operation. This mining closure raises with respect to the environment and unemployment. Innovative technology is needed to overcome the problems that arise and could simultaneously make use of abandoned mine infrastructure. The increased electricity generation coming from renewable energy, which produces fluctuating and intermittent energy for the electric power system, causes frequency problems such that energy storage technologies are needed. Abandoned mines can be used for the implementation of energy storage plants. This paper explores the possibility of using abandoned mines in Poland for electrical energy storage. Closed mines can be used to store clean and flexible energy. This idea has the potential to support sustainable economic development within the community following mine closure in Poland.


Sign in / Sign up

Export Citation Format

Share Document