Real-time and selective detection of nitrates in water using graphene-based field-effect transistor sensors

2018 ◽  
Vol 5 (8) ◽  
pp. 1990-1999 ◽  
Author(s):  
Xiaoyan Chen ◽  
Haihui Pu ◽  
Zipeng Fu ◽  
Xiaoyu Sui ◽  
Jingbo Chang ◽  
...  

A benzyltriethylammonium chloride-modified graphene field-effect transistor sensor has high sensitivity, high selectivity and rapid response for nitrate detection.

2021 ◽  
Vol 174 ◽  
pp. 112804
Author(s):  
Seon Joo Park ◽  
Sung Eun Seo ◽  
Kyung Ho Kim ◽  
Sang Hun Lee ◽  
Jinyeong Kim ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4235 ◽  
Author(s):  
Nam Lee ◽  
Seung-Hoon Nahm ◽  
Insung Choi

The possibility of exposure to botulinum neurotoxin (BoNT), a powerful and potential bioterrorism agent, is considered to be ever increasing. The current gold-standard assay, live-mouse lethality, exhibits high sensitivity but has limitations including long assay times, whereas other assays evince rapidity but lack factors such as real-time monitoring or portability. In this study, we aimed to devise a novel detection system that could detect BoNT at below-nanomolar concentrations in the form of a stretchable biosensor. We used a field-effect transistor with a p-type channel and electrodes, along with a channel comprising aligned carbon nanotube layers to detect the type E light chain of BoNT (BoNT/E-Lc). The detection of BoNT/E-Lc entailed observing the cleavage of a unique peptide and the specific bonding between BoNT/E-Lc and antibody BoNT/E-Lc (Anti-BoNT/E-Lc). The unique peptide was cleaved by 60 pM BoNT/E-Lc; notably, 52 fM BoNT/E-Lc was detected within 1 min in the device with the antibody in the bent state. These results demonstrated that an all-carbon nanotube-based device (all-CNT-based device) could be produced without a complicated fabrication process and could be used as a biosensor with high sensitivity, suggesting its potential development as a wearable BoNT biosensor.


Sign in / Sign up

Export Citation Format

Share Document