Carbon nanotubes-ferrite-manganese dioxide micromotors for advanced oxidation processes in water treatment

2018 ◽  
Vol 5 (12) ◽  
pp. 2993-3003 ◽  
Author(s):  
Roberto Maria-Hormigos ◽  
Marta Pacheco ◽  
Beatriz Jurado-Sánchez ◽  
Alberto Escarpa

Multifunctional SW-Fe2O3/MnO2 tubular micromotors are used for ‘on-the-fly’ advanced water oxidation of industrial organic pollutants.

Industrialization and modernization in recent times have led to a water crisis across the world. Conventional methods of water treatment like physical, chemical and biological methods which comprise of many commonly used techniques like membrane separation, adsorption, chemical treatment etc. have been in use for many decades. However, problems like sludge disposal, high operating costs etc. have led to increased focus on Advanced Oxidation Processes (AOPs) as alternative treatment methods. AOPs basically involve reactions relying on the high oxidation potential of the hydroxyl (OH•) free radical. They have the potential to efficiently treat various toxic, organic pollutants and complete degradation of contaminants (mineralization) of emerging concern. Many different types of homogenous as well as heterogenous AOPs have been studied viz: UV/H2O2, Fenton, Photo-Fenton, Sonolysis, Photocatalysis etc. for treatment of a wide variety of organic pollutants. Different AOPs are suitable for different types of wastewater and hence proper selection of the right technique for a particular type of pollutant is required. The inherent advantages offered by AOPs like elimination of sludge disposal problems, operability under mild conditions, ability to harness sunlight, non selective nature (ability to degrade all organic and microbial contamination) etc. have made it one of the most actively researched areas in recent times for wastewater treatment. Despite the benefits and intense research, commercial applicability of AOPs as a practical technique for treating wastewater on a large scale is still far from satisfactory. Nevertheless, positive results in lab scale and pilot plant studies make them a promising water treatment technique for the future. In the present chapter, an attempt has been made to discuss all aspects of AOPs beginning with the fundamental concepts, classification, underlying mechanism, comparison, commercialization to the latest developments in AOPs.


Industrialization and modernization in recent times have led to a water crisis across the world. Conventional methods of water treatment like physical, chemical and biological methods which comprise of many commonly used techniques like membrane separation, adsorption, chemical treatment etc. have been in use for many decades. However, problems like sludge disposal, high operating costs etc. have led to increased focus on Advanced Oxidation Processes (AOPs) as alternative treatment methods. AOPs basically involve reactions relying on the high oxidation potential of the hydroxyl (OH•) free radical. They have the potential to efficiently treat various toxic, organic pollutants and complete degradation of contaminants (mineralization) of emerging concern. Many different types of homogenous as well as heterogenous AOPs have been studied viz: UV/H2O2, Fenton, Photo-Fenton, Sonolysis, Photocatalysis etc. for treatment of a wide variety of organic pollutants. Different AOPs are suitable for different types of wastewater and hence proper selection of the right technique for a particular type of pollutant is required. The inherent advantages offered by AOPs like elimination of sludge disposal problems, operability under mild conditions, ability to harness sunlight, non selective nature (ability to degrade all organic and microbial contamination) etc. have made it one of the most actively researched areas in recent times for wastewater treatment. Despite the benefits and intense research, commercial applicability of AOPs as a practical technique for treating wastewater on a large scale is still far from satisfactory. Nevertheless, positive results in lab scale and pilot plant studies make them a promising water treatment technique for the future. In the present chapter, an attempt has been made to discuss all aspects of AOPs beginning with the fundamental concepts, classification, underlying mechanism, comparison, commercialization to the latest developments in AOPs.


RSC Advances ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 9911-9920
Author(s):  
Gabriele Capilli ◽  
Damian Rodríguez Sartori ◽  
Monica C. Gonzalez ◽  
Enzo Laurenti ◽  
Claudio Minero ◽  
...  

Under UV-Vis irradiation, the metallic impurities embedded in non-purified commercial carbon nanotubes generate radicals suitable for advanced oxidation processes. Semiconducting PPY membranes enhance the photo activity of a supported catalyst.


2019 ◽  
Vol 9 (13) ◽  
pp. 2652 ◽  
Author(s):  
Jéssica Martini ◽  
Carla A. Orge ◽  
Joaquim L. Faria ◽  
M. Fernando R. Pereira ◽  
O. Salomé G. P. Soares

The degradation of sulfamethoxazole (SMX) by several advanced oxidation processes (AOPs) is carried out in the presence of different catalysts. The catalysts used consisted of carbon nanotubes (CNT), titanium dioxide (TiO2), a composite of carbon nanotubes and titanium dioxide (TiO2/CNT), and iron supported on carbon nanotubes (Fe/CNT). SMX removal was evaluated by catalytic ozonation, photocatalysis, catalytic oxidation with hydrogen peroxide, and combinations of these processes. The evolution of the SMX concentration during reaction time, the mineralization degree, the toxicity of the treated solution, and the formation of organic intermediates and ions were monitored. Ozonation catalyzed by Fe/CNT and CNT and photocatalytic ozonation in the presence of CNT presented the fastest degradation of SMX, whereas photocatalytic ozonation with CNT showed the best results in terms of organic matter removal (92% of total organic carbon (TOC) depletion). Total mineralization of the solution and almost complete reduction of toxicity was only achieved in the photocatalytic ozonation with H2O2 and Fe/CNT catalysts. The compound 3-amino-5-methylisoxazole was one of the first intermediates formed during SMX degradation. p-Benzoquinone was only formed in photocatalysis. Oxalic and oxamic acids were also detected and in most of the catalytic processes they appeared in small amounts. Ion concentrations increased with the reaction time.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1766
Author(s):  
Alexandru Enesca ◽  
Luminita Andronic

The diversification of pollutants type and concentration in wastewater has underlined the importance of finding new alternatives to traditional treatment methods. Advanced oxidation processes (AOPs), among others, are considered as promising candidate to efficiently remove organic pollutants such as dyes or pharmaceutical active compounds (PhACs). The present minireview resumes several recent achievements on the implementation and optimization of photoactive heterostructures used as photocatalysts for dyes and PhACs removal. The paper is focused on various methods of enhancing the heterostructure photocatalytic properties by optimizing parameters such as synthesis methods, composition, crystallinity, morphology, pollutant concentration and light irradiation.


Sign in / Sign up

Export Citation Format

Share Document