Advanced Oxidation Processes for Wastewater Remediation: Fundamental Concepts to Recent Advances

Industrialization and modernization in recent times have led to a water crisis across the world. Conventional methods of water treatment like physical, chemical and biological methods which comprise of many commonly used techniques like membrane separation, adsorption, chemical treatment etc. have been in use for many decades. However, problems like sludge disposal, high operating costs etc. have led to increased focus on Advanced Oxidation Processes (AOPs) as alternative treatment methods. AOPs basically involve reactions relying on the high oxidation potential of the hydroxyl (OH•) free radical. They have the potential to efficiently treat various toxic, organic pollutants and complete degradation of contaminants (mineralization) of emerging concern. Many different types of homogenous as well as heterogenous AOPs have been studied viz: UV/H2O2, Fenton, Photo-Fenton, Sonolysis, Photocatalysis etc. for treatment of a wide variety of organic pollutants. Different AOPs are suitable for different types of wastewater and hence proper selection of the right technique for a particular type of pollutant is required. The inherent advantages offered by AOPs like elimination of sludge disposal problems, operability under mild conditions, ability to harness sunlight, non selective nature (ability to degrade all organic and microbial contamination) etc. have made it one of the most actively researched areas in recent times for wastewater treatment. Despite the benefits and intense research, commercial applicability of AOPs as a practical technique for treating wastewater on a large scale is still far from satisfactory. Nevertheless, positive results in lab scale and pilot plant studies make them a promising water treatment technique for the future. In the present chapter, an attempt has been made to discuss all aspects of AOPs beginning with the fundamental concepts, classification, underlying mechanism, comparison, commercialization to the latest developments in AOPs.

Industrialization and modernization in recent times have led to a water crisis across the world. Conventional methods of water treatment like physical, chemical and biological methods which comprise of many commonly used techniques like membrane separation, adsorption, chemical treatment etc. have been in use for many decades. However, problems like sludge disposal, high operating costs etc. have led to increased focus on Advanced Oxidation Processes (AOPs) as alternative treatment methods. AOPs basically involve reactions relying on the high oxidation potential of the hydroxyl (OH•) free radical. They have the potential to efficiently treat various toxic, organic pollutants and complete degradation of contaminants (mineralization) of emerging concern. Many different types of homogenous as well as heterogenous AOPs have been studied viz: UV/H2O2, Fenton, Photo-Fenton, Sonolysis, Photocatalysis etc. for treatment of a wide variety of organic pollutants. Different AOPs are suitable for different types of wastewater and hence proper selection of the right technique for a particular type of pollutant is required. The inherent advantages offered by AOPs like elimination of sludge disposal problems, operability under mild conditions, ability to harness sunlight, non selective nature (ability to degrade all organic and microbial contamination) etc. have made it one of the most actively researched areas in recent times for wastewater treatment. Despite the benefits and intense research, commercial applicability of AOPs as a practical technique for treating wastewater on a large scale is still far from satisfactory. Nevertheless, positive results in lab scale and pilot plant studies make them a promising water treatment technique for the future. In the present chapter, an attempt has been made to discuss all aspects of AOPs beginning with the fundamental concepts, classification, underlying mechanism, comparison, commercialization to the latest developments in AOPs.


2018 ◽  
Vol 5 (12) ◽  
pp. 2993-3003 ◽  
Author(s):  
Roberto Maria-Hormigos ◽  
Marta Pacheco ◽  
Beatriz Jurado-Sánchez ◽  
Alberto Escarpa

Multifunctional SW-Fe2O3/MnO2 tubular micromotors are used for ‘on-the-fly’ advanced water oxidation of industrial organic pollutants.


2020 ◽  
Vol 32 (11) ◽  
pp. 2677-2684
Author(s):  
V.S. Solanki ◽  
B. Pare ◽  
P. Gupta ◽  
S.B. Jonnalagadda ◽  
R. Shrivastava

In 21st century, organic and domestic wastes and discharges from varied chemical and manufacturing industries to water bodies become a critical issue and challenge for the researchers, engineers and policy makers. Advanced oxidation processes (AOPs) are efficient, sustainable, economically viable and green techniques to elimination on-degradable organic pollutants by biological and traditional processes. A number of research articles have been published from the past two decades on the wastewater treatment using various advanced oxidation processes. The main objective of this review paper is to provide the quick view for researchers, academicians and scientists in the area of wastewater treatment using various types of AOPs, which incorporate green principles involves in the processes for removal of different pollutants and contaminants including dyes, phenols, pesticides, herbicides etc. from wastewaters, with emphasis on the degradation efficiency of various photocatalysts. The formation reactions of •OH radical and the mechanisms of degradation of various organic pollutants in the wastewater is also discussed. This review covers various types of advanced oxidation processes, viz., ozone-based processes, photocatalysis and Fenton-based reactions.


2018 ◽  
Vol 17 (11) ◽  
pp. 1573-1598 ◽  
Author(s):  
M. Bartolomeu ◽  
M. G. P. M. S. Neves ◽  
M. A. F. Faustino ◽  
A. Almeida

A review on novel approaches for wastewater remediation based on advanced oxidation processes (AOPs), including the photodynamic approach mediated by tetrapyrrolic derivatives.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1766
Author(s):  
Alexandru Enesca ◽  
Luminita Andronic

The diversification of pollutants type and concentration in wastewater has underlined the importance of finding new alternatives to traditional treatment methods. Advanced oxidation processes (AOPs), among others, are considered as promising candidate to efficiently remove organic pollutants such as dyes or pharmaceutical active compounds (PhACs). The present minireview resumes several recent achievements on the implementation and optimization of photoactive heterostructures used as photocatalysts for dyes and PhACs removal. The paper is focused on various methods of enhancing the heterostructure photocatalytic properties by optimizing parameters such as synthesis methods, composition, crystallinity, morphology, pollutant concentration and light irradiation.


Sign in / Sign up

Export Citation Format

Share Document