scholarly journals Functional polymeric dialdehyde dextrin network capped mesoporous silica nanoparticles for pH/GSH dual-controlled drug release

RSC Advances ◽  
2018 ◽  
Vol 8 (37) ◽  
pp. 20862-20871 ◽  
Author(s):  
Chao Chen ◽  
Wen Sun ◽  
Wenji Yao ◽  
Yibing Wang ◽  
Hanjie Ying ◽  
...  

A smart pH/GSH dual-responsive drug delivery system by using DAD as a “gatekeeper polymer” to end-cap MSNs via pH-sensitive Schiff bond, whereas DAD polymer shell were cross-linked by GSH-sensitive disulfide bond.

2016 ◽  
Vol 52 (95) ◽  
pp. 13775-13778 ◽  
Author(s):  
Xin Wang ◽  
Li-Li Tan ◽  
Xi Li ◽  
Nan Song ◽  
Zheng Li ◽  
...  

A new drug delivery system, based on mesoporous silica nanoparticles gated by carboxylatopillar[5]arene-modified gold nanoparticles, has been fabricated for controlled drug release.


RSC Advances ◽  
2019 ◽  
Vol 9 (30) ◽  
pp. 17179-17182 ◽  
Author(s):  
Qing Bian ◽  
Zhaolu Xue ◽  
Po Sun ◽  
Kejing Shen ◽  
Shangbing Wang ◽  
...  

Visible-light triggered drug delivery system based on tetra-ortho-methoxy-substituted azobenzene (mAzo) and β-cyclodextrin (β-CD) modified mesoporous silica nanoparticles (MSNs-CD).


2017 ◽  
Vol 53 (62) ◽  
pp. 8755-8758 ◽  
Author(s):  
Song Wang ◽  
Fei Liu ◽  
Xiang-Ling Li

We constructed a versatile drug delivery system using dual internal stimulus, achieving controllable release and monitoring simultaneously.


Nanoscale ◽  
2015 ◽  
Vol 7 (14) ◽  
pp. 6304-6310 ◽  
Author(s):  
Yuxia Tang ◽  
Hao Hu ◽  
Molly Gu Zhang ◽  
Jibin Song ◽  
Liming Nie ◽  
...  

A photoresponsive drug delivery system was developed for light-mediated drug release and aptamer-targeted cancer therapy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1396
Author(s):  
Muhammad Umair Amin ◽  
Sajid Ali ◽  
Imran Tariq ◽  
Muhammad Yasir Ali ◽  
Shashank Reddy Pinnapreddy ◽  
...  

The immediate release of chemotherapeutics at the target site, along with no premature release in circulation is always challenging. The purpose of this study was to develop a stimuli responsive drug delivery system, composed of lipid supported mesoporous silica nanoparticles (MSNPs) for triggered drug release at the target site and simultaneously avoiding the premature release. MSNPs with a higher drug loading capacity and very slow release were designed so as to enhance release by FDA approved US-irradiation. Doxorubicin, as a model drug, and perfluoropentane (PFP) as a US responsive material, were entrapped in the porous structure of MSNPs. Lipid coating enhanced the cellular uptake and in addition provided a gatekeeping effect at the pore opening to reduce premature release. The mechanical and thermal effects of US induced the conversion of liquid PFP to a gaseous form that was able to rupture the lipid layer, resulting in triggered drug release. The prolonged stability profile and non-toxic behavior made them suitable candidate for the delivery of anticancer drugs. This smart system, with the abilities of better cellular uptake and higher cytotoxic effects on US-irradiation, would be a good addition to the applied side of chemotherapeutic advanced drug delivery systems.


2013 ◽  
Vol 25 (4) ◽  
pp. 574-585 ◽  
Author(s):  
Baisong Chang ◽  
Dan Chen ◽  
Yang Wang ◽  
Yanzuo Chen ◽  
Yunfeng Jiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document