scholarly journals Preparation of a MoS2/carbon nanotube composite as an electrode material for high-performance supercapacitors

RSC Advances ◽  
2018 ◽  
Vol 8 (52) ◽  
pp. 29488-29494 ◽  
Author(s):  
Xiaobo Chen ◽  
Jingguo Ding ◽  
Jing Jiang ◽  
Guoce Zhuang ◽  
Zhihai Zhang ◽  
...  

The effect of carbon supports on the electrochemical performance of MoS2 nanosheets for supercapacitor applications was investigated.

2019 ◽  
Vol 48 (28) ◽  
pp. 10652-10660 ◽  
Author(s):  
Tarugu Anitha ◽  
Araveeti Eswar Reddy ◽  
Yedluri Anil Kumar ◽  
Young-Rae Cho ◽  
Hee-Je Kim

A bunch of PbMoO4/CdMoO4 nanocube-like structures exhibit superior specific capacitance and cycling stability to PbMoO4 and CdMoO4 electrodes.


2020 ◽  
Vol 49 (3) ◽  
pp. 941-941
Author(s):  
Tarugu Anitha ◽  
Araveeti Eswar Reddy ◽  
Yedluri Anil Kumar ◽  
Young-Rae Cho ◽  
Hee-Je Kim

Correction for ‘One-step synthesis and electrochemical performance of a PbMoO4/CdMoO4 composite as an electrode material for high-performance supercapacitor applications’ by Tarugu Anitha et al., Dalton Trans., 2019, 48, 10652–10660.


RSC Advances ◽  
2017 ◽  
Vol 7 (37) ◽  
pp. 22983-22989 ◽  
Author(s):  
Shupei Sun ◽  
Xiaoming Liao ◽  
Yu Sun ◽  
Guangfu Yin ◽  
Yadong Yao ◽  
...  

A novel α-MoO3/TiO2 composite electrode material for high performance supercapacitor applications was synthesized using a facile electrodeposition technique.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Muhammad Sajjad ◽  
Yaqoob Khan

We developed a high performance SSC device with excellent electrochemical performance in terms of specific capacitance, rate capability, energy density and power density which surpasses most of the reports.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1143 ◽  
Author(s):  
Anil Yedluri ◽  
Tarugu Anitha ◽  
Hee-Je Kim

Hierarchical NiMoO4/NiMoO4 nanoflowers were fabricated on highly conductive flexible nickel foam (NF) substrates using a facile hydrothermal method to achieve rapid charge-discharge ability, high energy density, long cycling lifespan, and higher flexibility for high-performance supercapacitor electrode materials. The synthesized composite electrode material, NF/NiMoO4/NiMoO4 with a nanoball-like NF/NiMoO4 structure on a NiMoO4 surface over a NF substrate, formed a three-dimensional interconnected porous network for high-performance electrodes. The novel NF/NiMoO4/NiMoO4 nanoflowers not only enhanced the large surface area and increased the electrochemical activity, but also provided an enhanced rapid ion diffusion path and reduced the charge transfer resistance of the entire electrode effectively. The NF/NiMoO4/NiMoO4 composite exhibited significantly improved supercapacitor performance in terms of a sustained cycling life, high specific capacitance, rapid charge-discharge capability, high energy density, and good rate capability. Electrochemical analysis of the NF/NiMoO4/NiMoO4 nanoflowers fabricated on the NF substrate revealed ultra-high electrochemical performance with a high specific capacitance of 2121 F g−1 at 12 mA g−1 in a 3 M KOH electrolyte and 98.7% capacitance retention after 3000 cycles at 14 mA g−1. This performance was superior to the NF/NiMoO4 nanoball electrode (1672 F g−1 at 12 mA g−1 and capacitance retention 93.4% cycles). Most importantly, the SC (NF/NiMoO4/NiMoO4) device displayed a maximum energy density of 47.13 W h kg−1, which was significantly higher than that of NF/NiMoO4 (37.1 W h kg−1). Overall, the NF/NiMoO4/NiMoO4 composite is a suitable material for supercapacitor applications.


RSC Advances ◽  
2015 ◽  
Vol 5 (38) ◽  
pp. 30260-30267 ◽  
Author(s):  
Hanlin Cheng ◽  
Hai M. Duong

CNT gel composite presenting different structures have been developed with excellent electrochemical performance for supercapacitor applications.


RSC Advances ◽  
2014 ◽  
Vol 4 (43) ◽  
pp. 22551-22560 ◽  
Author(s):  
Rahul S. Diggikar ◽  
Dattatray J. Late ◽  
Bharat B. Kale

The unique morphologies of reduced graphene oxide (RGO) and RGO–PANI nanofibers (NF) composites have been demonstrated. The enhanced electrochemical performance was observed for honeycomb like RGO–PANI NFs composites.


2021 ◽  
pp. 132392
Author(s):  
Bingjun Yang ◽  
Bao Liu ◽  
Jiangtao Chen ◽  
Yunxia Ding ◽  
Yinglun Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document