Hyaluronic acid/lysozyme self-assembled coacervate to promote cutaneous wound healing

2020 ◽  
Vol 8 (6) ◽  
pp. 1702-1710 ◽  
Author(s):  
Xiaoye Zhao ◽  
Lin Wang ◽  
Jushan Gao ◽  
Xi Chen ◽  
Ke Wang

The preparation and wound healing in a full-thickness skin defect model of HL coacervate.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Biao Sun ◽  
Shilei Guo ◽  
Fei Xu ◽  
Bin Wang ◽  
Xiujuan Liu ◽  
...  

In recent years, the bioactive factors were utilized in exercise and athletic skin injuries. In this research, the concentrated conditioned medium of hypoxia-preconditioned adipose mesenchymal stem cells, which is rich in bioactive factor, is applied in full-thickness skin defect model to evaluate the therapeutic efficacy. Adipose mesenchymal stem cells were harvested from the abdominal subcutaneous adipose tissues. The surface markers and the potential of differentiation were analyzed. The conditioned medium of hypoxia-preconditioned stem cells was collected and freeze-dried and then applied on the rat full-thickness skin defect model, and the healing time of each group was recorded. Haematoxylin and eosin staining of skin was assessed by microscope. The characteristics of adipose mesenchymal stem cells were similar to those of other mesenchymal stem cells. The concentration of protein in freeze-dried conditioned medium in 1 mL water was about 15 times higher than in the normal condition medium. In vivo, the concentrated hypoxia-preconditioned conditioned medium can reduce the wound size and accelerate the skin wound healing. The concentrated hypoxia-preconditioned adipose mesenchymal stem cell-conditioned medium has great effect on rat model of wound healing, and it would be an ideal agent for wound care in clinical application.


Biomaterials ◽  
1996 ◽  
Vol 17 (10) ◽  
pp. 989-994 ◽  
Author(s):  
Risako Matsui ◽  
Ken-ichi Osaki ◽  
Jun Konishi ◽  
Kazuhito Ikegami ◽  
Mikio Koide

2010 ◽  
Vol 59 (3) ◽  
pp. 541-544
Author(s):  
Katsuro Fukuyama ◽  
Masaaki Imabayashi ◽  
Hirohumi Ohsako ◽  
Yuichiro Yazaki ◽  
Takashi Murayama ◽  
...  

2019 ◽  
Vol 14 (3) ◽  
pp. 035004 ◽  
Author(s):  
Xiaoxuan Lei ◽  
Yu Yang ◽  
Guiqiu Shan ◽  
Yingen Pan ◽  
Biao Cheng

2021 ◽  
Vol 9 (2) ◽  
pp. 175-181
Author(s):  
Ilya V. Artsimovich ◽  
Evgenii V. Zinoviev ◽  
Aleksander V. Gostimskii ◽  
Marat S. Asadulaev ◽  
Sergey V. Vissarionov ◽  
...  

BACKGROUND: Currently, numerous techniques or medical devices that allow complete or partial restoration of the lost skin within a short time remain as subjects of development. Many studies have shown the effectiveness of using stem cells in the treatment of full-thickness skin defects, but their use remains very limited. At present, there is no consensus among researchers about the advisability of the use of stem cells in the treatment of burns as well as about the method of their introduction. AIM: This study aimed to examine the possibility of accelerating the reparative histogenesis of tissues in the zone of deep skin burns using cultures of adipogenic mesenchymal cells, as well as to evaluate the effectiveness of various methods of introducing cultures of these cells into the defect zone. MATERIALS AND METHODS: An experimental study was carried out on small laboratory animals (rats). After simulating a grade III burn, mesenchymal stem cells were transplanted and superficially applied to the wound surface or injected under the fascia. In the control group, no wound treatment was performed. To assess the effectiveness of the wound-healing preparations, the appearance of wounds was assessed daily, the nature of the discharge and presence and type of granulations were noted, and the timing of scab rejection and wound healing was recorded. The wound area was assessed using a planimetric method. A histological examination of wound biopsies was carried out on days 7, 14, 21, and 28 of observation. RESULTS: The application of adipogenic mesenchymal stem cells demonstrated the greatest efficiency on the developed burn model. Subfascial administration was less effective, but this method achieved a significant acceleration of wound healing in comparison with the control group. An increase in the healing index by 56.6% demonstrates the highest intensity of reparative regeneration in animals applied with adipogenic mesenchymal stem cells. CONCLUSIONS: The preliminary results show that the application of adipogenic mesenchymal stem cells on the skin defect is more effective than subfascial administration based on the healing index. The use of adipogenic mesenchymal stem cells may substantially increase the effectiveness of the treatment of full-thickness skin defects.


2019 ◽  
Vol 7 ◽  
Author(s):  
Tong Liu ◽  
Chao Qiu ◽  
Chi Ben ◽  
Haihang Li ◽  
Shihui Zhu

Abstract Background Split-thickness skin grafting is the current gold standard for the treatment of traumatic skin loss. However, for patients with extensive burns, split-thickness skin grafting is limited by donor skin availability. Grafting split-thickness skin minced into micrografts increases the expansion ratio but may reduce wound repair quality. Dermal substitutes such as Pelnac can enhance the healing of full-thickness skin wounds, but their application currently requires two surgeries. The present study investigated whether it is possible to repair full-thickness skin defects and improve wound healing quality in a single surgery using Pelnac as an overlay of minced split-thickness skin grafts in a rat model. Methods A full-thickness skin defect model was established using male Sprague-Dawley rats of 10 weeks old. The animals were randomly divided into control and experimental groups in which Vaseline gauze and Pelnac, respectively, were overlaid on minced split-thickness skin grafts to repair the defects. Wound healing rate and quality were compared between the two groups. For better illustration of the quality of wound healing, some results were compared with those obtained for normal skin of rats. Results We found that using Pelnac as an overlay for minced split-thickness skin grafts accelerated wound closure and stimulated cell proliferation and tissue angiogenesis. In addition, this approach enhanced collagen synthesis and increased the formation of basement membrane and dermis as well as the expression of growth factors related to wound healing while reducing scar formation. Conclusions Using minced split-thickness skin grafts overlaid with Pelnac enables the reconstruction of full-thickness skin defects in a single step and can increase the healing rate while improving the quality of wound healing.


2019 ◽  
Vol 6 (2) ◽  
pp. 26
Author(s):  
Shengjun C ◽  
Lingfeng W ◽  
Te B ◽  
Xue F ◽  
Fang L ◽  
...  

Objective: To explore the effects of allogeneic mouse adipose-derived mesenchymal stem cell (ADSC)-microporous sheep acellular dermal matrix (ADM) on wound healing of full-thickness skin defect in mice and the related mechanism.Methods: One Kunming mouse was sacrificed by cervical dislocation to collect adipose tissue from the inguinal region. Mouse ADSCs were isolated from the adipose tissue and cultured in vitro. Cells in the third passage were identified by cell adipogenic and osteogenic differentiation. The expressions of CD34, CD73, CD90, and CD105 were analyzed by flow cytometer. After one sheep was sacrificed with the skin of its back cut off, microporous sheep ADM was prepared by using acellular processing and freeze-thaw method. A round and full-thickness skin defect wound, with a diameter of 12 mm, was made on the back of each of 36 Kunming mice. The wounds were covered by microporous sheep ADM. The mice were divided into ADSC group and control group with 18 mice in each group according to the random number table method after surgery. A volume of 0.2 ml of DMEM/F12 culture medium containing 1 × 106 ADSCs was injected between microporous sheep ADM and the wound of each mouse in ADSC group, while 0.2 ml of DMEM/F12 culture medium was injected between microporous sheep ADM and the wound of each mouse in control group. At post-surgery day (PSD) 12 and 17, the wound healing rate in each group was calculated respectively; wound vascularization in 2 groups of mice was observed under the reverse irradiation of back light; and the granulation tissue in the wound in ADSC group was observed by means of hematoxylin-eosin staining. At PSD 7, the thickness of the granulation tissue in the wound was measured in each group of mice. At PSD 12 and 17, the immunohistochemical method was used to detect the expression of VEGF in each group of mice. The number of samples was 6 in each group at each time point in the above experiments. The data obtained were processed with t-test and factorial design ANOVA.Results: (1) After 7 days of adipogenic induction, red lipid droplets were observed in the cytoplasm with oil red O staining. After 21 days of osteogenic induction, black calcium deposition was observed in the medium stained with silver nitrate. The expression levels of CD73, CD90, CD 105 and CD34 in cells were 97.82%, 99.32%, 97.35% and 5.88% respectively. The cells were identified as ADSCs. (2) The wound healing rates of ADSC group at PSD 12 and 17 [(78 ± 6)%, (98 ± 3)%] were significantly higher than those of control group at PSD 12 and 17 [(60 ± 9)%, (90 ± 4)%, t = 4.26, 4.46, p< .01]. (3) At PSD 7, no vessels obviously grew into the center of the wound in both groups of mice, while the granulation tissue already covered the wound in ADSC group. At PSD 12, the wound in ADSC group was more well-perfused than control group. At PSD 17, it was observed that large vessels were crossing through the whole wound in ADSC group, while large vessels were observed without crossing through the whole wound in control group. (4) In ADSC group, at PSD 7, the wound was covered with thin granulation tissue, and the granulation tissue was obviously thickened at PSD 12. At PSD 17, the granulation tissue was covered by epidermis. At PSD 7, the thickness of the granulation tissue in the wound in ADSC group [(0.62 ± 0.05) mm] was significantly greater than that in control group [(0.31 ± 0.04) mm, t = 12.27, p < .01]. (5) At PSD 12 and 17, the expression levels of VEGF in the wound in ADSC group [(80.7 ± 2.2), (102.8 ± 2.6)/mm2] were significantly than those in control group [(59.5 ± 2.4), (81.5 ± 2.6)/mm2, t = 15.95, 14.14, p < .01].Conclusions: Allogeneic mouse ADSC-microporous sheep ADM can promote angiogenesis and the growth of granulation tissue in the wound with full-thickness skin defect in mice, thus accelerating wound healing. The mechanism is probably related with the increase in the expression of VEGF.


2017 ◽  
Vol 26 (2) ◽  
pp. 293-307 ◽  
Author(s):  
Vijay K. Kuna ◽  
Arvind M. Padma ◽  
Joakim Håkansson ◽  
Jan Nygren ◽  
Robert Sjöback ◽  
...  

Here we report the fabrication of a novel composite gel from decellularized gal-gal-knockout porcine skin and human peripheral blood mononuclear cells (hPBMCs) for full-thickness skin wound healing. Decellularized skin extracellular matrix (ECM) powder was prepared via chemical treatment, freeze drying, and homogenization. The powder was mixed with culture medium containing hyaluronic acid to generate a pig skin gel (PSG). The effect of the gel in regeneration of full-thickness wounds was studied in nude mice. We found significantly accelerated wound closure already on day 15 in animals treated with PSG only or PSG + hPBMCs compared to untreated and hyaluronic acid-treated controls ( p < 0.05). Addition of the hPBMCs to the gel resulted in marked increase of host blood vessels as well as the presence of human blood vessels. At day 25, histologically, the wounds in animals treated with PSG only or PSG + hPBMCs were completely closed compared to those of controls. Thus, the gel facilitated generation of new skin with well-arranged epidermal cells and restored bilayer structure of the epidermis and dermis. These results suggest that porcine skin ECM gel together with human cells may be a novel and promising biomaterial for medical applications especially for patients with acute and chronic skin wounds.


Sign in / Sign up

Export Citation Format

Share Document