Selective conformational control by excitation of NH imino vibrational antennas

2019 ◽  
Vol 21 (45) ◽  
pp. 24935-24949 ◽  
Author(s):  
Sándor Góbi ◽  
Igor Reva ◽  
István Pál Csonka ◽  
Cláudio M. Nunes ◽  
György Tarczay ◽  
...  

We provide experimental evidence for the occurrence of selective and reversible conformational control over the SH group by vibrational excitation of remote NH groups. Using an imino group that acts as a molecular antenna has no precedents.

2018 ◽  
Vol 54 (38) ◽  
pp. 4778-4781 ◽  
Author(s):  
A. J. Lopes Jesus ◽  
Cláudio M. Nunes ◽  
Rui Fausto ◽  
Igor Reva

We apply vibrational antennas (OH or NH2 group) to achieve unprecedented conformational control over the heavy aldehyde fragment in 2-formyl-2H-azirine, using selective vibrational excitations of the OH or NH2 stretching overtones and combination modes.


2019 ◽  
Vol 42 ◽  
Author(s):  
Olya Hakobyan ◽  
Sen Cheng

Abstract We fully support dissociating the subjective experience from the memory contents in recognition memory, as Bastin et al. posit in the target article. However, having two generic memory modules with qualitatively different functions is not mandatory and is in fact inconsistent with experimental evidence. We propose that quantitative differences in the properties of the memory modules can account for the apparent dissociation of recollection and familiarity along anatomical lines.


1997 ◽  
Vol 161 ◽  
pp. 437-442
Author(s):  
Salvatore Di Bernardo ◽  
Romana Fato ◽  
Giorgio Lenaz

AbstractOne of the peculiar aspects of living systems is the production and conservation of energy. This aspect is provided by specialized organelles, such as the mitochondria and chloroplasts, in developed living organisms. In primordial systems lacking specialized enzymatic complexes the energy supply was probably bound to the generation and maintenance of an asymmetric distribution of charged molecules in compartmentalized systems. On the basis of experimental evidence, we suggest that lipophilic quinones were involved in the generation of this asymmetrical distribution of charges through vectorial redox reactions across lipid membranes.


Author(s):  
R. J. Barrnett ◽  
J. A. Higgins

The main products of intestinal hydrolysis of dietary triglycerides are free fatty acids and monoglycerides. These form micelles from which the lipids are absorbed across the mucosal cell brush border. Biochemical studies have indicated that intestinal mucosal cells possess a triglyceride synthesising system, which uses monoglyceride directly as an acylacceptor as well as the system found in other tissues in which alphaglycerophosphate is the acylacceptor. The former pathway is used preferentially for the resynthesis of triglyceride from absorbed lipid, while the latter is used mainly for phospholipid synthesis. Both lipids are incorporated into chylomicrons. Morphological studies have shown that during fat absorption there is an initial appearance of fat droplets within the cisternae of the smooth endoplasmic reticulum and that these subsequently accumulate in the golgi elements from which they are released at the lateral borders of the cell as chylomicrons.We have recently developed several methods for the fine structural localization of acyltransferases dependent on the precipitation, in an electron dense form, of CoA released during the transfer of the acyl group to an acceptor, and have now applied these methods to a study of the fine structural localization of the enzymes involved in chylomicron lipid biosynthesis. These methods are based on the reduction of ferricyanide ions by the free SH group of CoA.


Author(s):  
Michael T. Bucek ◽  
Howard J. Arnott

It is believed by the authors, with supporting experimental evidence, that as little as 0.5°, or less, knife clearance angle may be a critical factor in obtaining optimum quality ultrathin sections. The degree increments located on the knife holder provides the investigator with only a crude approximation of the angle at which the holder is set. With the increments displayed on the holder one cannot set the clearance angle precisely and reproducibly. The ability to routinely set this angle precisely and without difficulty would obviously be of great assistance to the operator. A device has been contrived to aid the investigator in precisely setting the clearance angle. This device is relatively simple and is easily constructed. It consists of a light source and an optically flat, front surfaced mirror with a minute black spot in the center. The mirror is affixed to the knife by placing it permanently on top of the knife holder.


Author(s):  
H. Mohri

In 1959, Afzelius observed the presence of two rows of arms projecting from each outer doublet microtubule of the so-called 9 + 2 pattern of cilia and flagella, and suggested a possibility that the outer doublet microtubules slide with respect to each other with the aid of these arms during ciliary and flagellar movement. The identification of the arms as an ATPase, dynein, by Gibbons (1963)strengthened this hypothesis, since the ATPase-bearing heads of myosin molecules projecting from the thick filaments pull the thin filaments by cross-bridge formation during muscle contraction. The first experimental evidence for the sliding mechanism in cilia and flagella was obtained by examining the tip patterns of molluscan gill cilia by Satir (1965) who observed constant length of the microtubules during ciliary bending. Further evidence for the sliding-tubule mechanism was given by Summers and Gibbons (1971), using trypsin-treated axonemal fragments of sea urchin spermatozoa. Upon the addition of ATP, the outer doublets telescoped out from these fragments and the total length reached up to seven or more times that of the original fragment. Thus, the arms on a certain doublet microtubule can walk along the adjacent doublet when the doublet microtubules are disconnected by digestion of the interdoublet links which connect them with each other, or the radial spokes which connect them with the central pair-central sheath complex as illustrated in Fig. 1. On the basis of these pioneer works, the sliding-tubule mechanism has been established as one of the basic mechanisms for ciliary and flagellar movement.


Sign in / Sign up

Export Citation Format

Share Document