Equation of state of water based on the SCAN meta-GGA density functional

2020 ◽  
Vol 22 (8) ◽  
pp. 4626-4631 ◽  
Author(s):  
Gang Zhao ◽  
Shuyi Shi ◽  
Huijuan Xie ◽  
Qiushuang Xu ◽  
Mingcui Ding ◽  
...  

By ab initio molecular dynamics simulations, the newly developed SCAN meta-GGA functional is proved better than the widely used PBE-GGA functional in describing the equation of state of water.

2018 ◽  
Vol 20 (36) ◽  
pp. 23717-23725 ◽  
Author(s):  
Vesa Hänninen ◽  
Garold Murdachaew ◽  
Gilbert M. Nathanson ◽  
R. Benny Gerber ◽  
Lauri Halonen

Ab initio molecular dynamics simulations of formic acid (FA) dimer colliding with liquid water at 300 K have been performed using density functional theory.


2020 ◽  
Vol 8 (43) ◽  
pp. 15436-15449
Author(s):  
Julia E. Medvedeva ◽  
Bishal Bhattarai

Microscopic mechanisms of the formation of H defects and their role in passivation of under-coordinated atoms, short- and long-range structural transformations, and the resulting electronic properties of amorphous In–Ga–O with In : Ga = 6 : 4 are investigated using computationally-intensive ab initio molecular dynamics simulations and accurate density-functional calculations.


2021 ◽  
Author(s):  
Monika Gešvandtnerová ◽  
Dario Rocca ◽  
Tomas Bucko

<div>In this work we present a detailed \textit{ab initio} study of the carbonylation reaction of methoxy groups in the zeolite mordenite, as it is the rate determining step in a series of elementary reactions leading to ethanol. </div><div>For the first time we employ full molecular dynamics simulations to evaluate free energies of activation for the reactions in side pockets and main channels. Results show that the reaction in the side pocket is preferred and, when dispersion interactions are taken into account, this preference becomes even stronger. This conclusion is confirmed using multiple levels of density functional theory approximations with (PBE-D2, PBE-MBD, and vdW-DF2-B86R) or without (PBE, HSE06) dispersion corrections. These calculations, that in principle would require several demanding molecular dynamics simulations, were made possible at a minimal computational cost by using a newly developed approach that combines thermodynamic perturbation theory with machine learning.</div>


2008 ◽  
Vol 103 (2) ◽  
pp. 023510 ◽  
Author(s):  
Shigeaki Ono ◽  
John P. Brodholt ◽  
Dario Alfè ◽  
Maria Alfredsson ◽  
G. David Price

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Satoshi Ohmura ◽  
Kiyonobu Nagaya ◽  
Fuyuki Shimojo ◽  
Makoto Yao

AbstractDissociation mechanisms are studied by ab initio molecular dynamics simulations based on density functional theory for the highly charged bromophenol (C6H4OHBr)n+ (n ≤ 10) in the ground electronic state and in an electronic state which has a high electronic temperature Te characterized by Fermi–Dirac distribution. In the case of the ground state, the dissociation occurs through a sequential multi-stage process. At times shorter than 20 fs after the molecule is charged, hydrogens are dissociated from the molecule and, subsequently, the carbon ring breaks at about 150 fs In the case of an electronic state with high Te, the mechanism changes from a sequential dissociation process to a simultaneous process occurring at Te > 5 eV. To estimate the charge transfer time in a molecular bromide parent ion with +6 charge, which is generated through Auger cascades, we also performed nonadiabatic quantum-mechanical molecular dynamics (NAQMD) simulations that include the effects of nonadiabatic electronic transition with a surface-hopping approach.


Sign in / Sign up

Export Citation Format

Share Document