DyIII single-molecule magnets from ligands incorporating both amine and acylhydrazine Schiff base groups: the centrosymmetric {Dy2} displaying dual magnetic relaxation behaviors

2020 ◽  
Vol 49 (44) ◽  
pp. 15739-15749
Author(s):  
Sen-Da Su ◽  
Jia-Xin Li ◽  
Fan Xu ◽  
Chen-Xiao Wang ◽  
Kai Wang ◽  
...  

Using ligands incorporating both amine and acylhydrazine Schiff base groups, two {Dy2} and a {Dy6} SMMs are synthesized. Two {Dy2} show dual magnetic relaxation behaviors, which could be ascribed to the joint contributions of single ion anisotropy and magnetic interactions.

2015 ◽  
Vol 44 (29) ◽  
pp. 13242-13249 ◽  
Author(s):  
Malay Dolai ◽  
Mahammad Ali ◽  
Ján Titiš ◽  
Roman Boča

Two CuII–DyIII and CoIII–DyIII dinuclear complexes of a Schiff base ligand (H3L) exhibit single-molecule magnetic behaviour with multiple slow magnetic relaxation processes for the former.


2019 ◽  
Vol 5 (4) ◽  
pp. 65 ◽  
Author(s):  
Tetsu Sato ◽  
Satoshi Matsuzawa ◽  
Keiichi Katoh ◽  
Brian K. Breedlove ◽  
Masahiro Yamashita

When using single molecule magnets (SMMs) in spintronics devices, controlling the quantum tunneling of the magnetization (QTM) and spin-lattice interactions is important. To improve the functionality of SMMs, researchers have explored the effects of changing the coordination geometry of SMMs and the magnetic interactions between them. Here, we report on the effects of the octa-coordination geometry on the magnetic relaxation processes of dinuclear dysprosium(III) complexes in the low-temperature region. Mixed ligand dinuclear Dy3+ triple-decker complexes [(TPP)Dy(Pc)Dy(TPP)] (1), which have crystallographically equivalent Dy3+ ions, and [(Pc)Dy(Pc)Dy(TPP)] (2), which have non-equivalent Dy3+ ions, (Pc2− = phthalocyaninato; TPP2− = tetraphenylporphyrinato), undergo dual magnetic relaxation processes. This is due to the differences in the ground states due to the twist angle (φ) between the ligands. The relationship between the off-diagonal terms and the dual magnetic relaxation processes that appears due to a deviation from D4h symmetry is discussed.


2019 ◽  
Vol 48 (37) ◽  
pp. 14062-14068 ◽  
Author(s):  
Jingjing Lu ◽  
Xiao-Lei Li ◽  
Zhenhua Zhu ◽  
Shuting Liu ◽  
Qianqian Yang ◽  
...  

Structural modification of the Dy6 cores of [Dy6L3(SCN)6(DMF)8]·4DMF (1) and [Dy6L3(NO3)6(DMF)4(H2O)2]·8DMF (2) results in the transition of magnetic relaxation behavior from single relaxation to multiple relaxation.


Inorganics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 66
Author(s):  
Mamo Gebrezgiabher ◽  
Yosef Bayeh ◽  
Tesfay Gebretsadik ◽  
Gebrehiwot Gebreslassie ◽  
Fikre Elemo ◽  
...  

The breakthrough in Ln(III)-based SMMs with Schiff base ligands have been occurred for the last decade on account of their magnetic behavior, anisotropy and relaxation pathways. Herein, we review the synthetic strategy, from a structural point of view and magnetic properties of mono, di, tri and polynuclear Ln(III)-based single-molecule magnets mainly with Schiff bases of Salicylaldehyde origin. Special attention has been given to some important breakthroughs that are changing the perspective of this field with a special emphasis on slow magnetic relaxation. An overview of 50 Ln(III)-Schiff base complexes with SMM behavior, covering the period 2008–2020, which have been critical in understanding the magnetic interactions between the Ln(III)-centers, are presented and discussed in detail.


2016 ◽  
Vol 52 (26) ◽  
pp. 4772-4775 ◽  
Author(s):  
Szymon Chorazy ◽  
Michał Rams ◽  
Anna Hoczek ◽  
Bernard Czarnecki ◽  
Barbara Sieklucka ◽  
...  

{CoII9[WV(CN)8]6} clusters capped by odd and even number of bidentate ligands reveal the improved slow magnetic relaxation due to the significant structural anisotropy.


2017 ◽  
Vol 46 (25) ◽  
pp. 8259-8268 ◽  
Author(s):  
Wan-Ying Zhang ◽  
Yong-Mei Tian ◽  
Hong-Feng Li ◽  
Peng Chen ◽  
Yi-Quan Zhang ◽  
...  

A series of linear trinuclear complexes Ln2M(OQ)8 [Ln(iii) = Dy and Er, M(ii) = Ca and Mg] were structurally and magnetically investigated.


2014 ◽  
Vol 67 (11) ◽  
pp. 1542 ◽  
Author(s):  
Michele Vonci ◽  
Colette Boskovic

Polyoxometalates are robust and versatile multidentate oxygen-donor ligands, eminently suitable for coordination to trivalent lanthanoid ions. To date, 10 very different structural families of such complexes have been found to exhibit slow magnetic relaxation due to single-molecule magnet (SMM) behaviour associated with the lanthanoid ions. These families encompass complexes with between one and four of the later lanthanoid ions: Tb, Dy, Ho, Er, and Yb. The lanthanoid coordination numbers vary between six and eleven and a range of coordination geometries are evident. The highest energy barrier to magnetisation reversal measured to date for a lanthanoid–polyoxometalate SMM is Ueff/kB = 73 K for the heterodinuclear Dy–Eu compound (Bu4N)8H4[DyEu(OH)2(γ-SiW10O36)2].


2020 ◽  
Vol 59 (49) ◽  
pp. 22048-22053
Author(s):  
Chihiro Kachi‐Terajima ◽  
Tasuku Eiba ◽  
Rikako Ishii ◽  
Hitoshi Miyasaka ◽  
Yuta Kodama ◽  
...  

2020 ◽  
Vol 49 (35) ◽  
pp. 12458-12465 ◽  
Author(s):  
Hanhan Chen ◽  
Lin Sun ◽  
Jinpeng Zhang ◽  
Zikang Xiao ◽  
Pengtao Ma ◽  
...  

Triangular {Er3} cluster containing POM exhibits field-induced two thermally activated relaxation processes. Whereas, the diamagnetic dilution sample indicates slow magnetic relaxation with the QTM being partially suppressed.


Sign in / Sign up

Export Citation Format

Share Document