Computational discovery of a large-imine-cage-based porous molecular material and its application in water desalination

2019 ◽  
Vol 4 (4) ◽  
pp. 912-920 ◽  
Author(s):  
Marco Bernabei ◽  
Raul Pérez Soto ◽  
Ismael Gómez García ◽  
Maciej Haranczyk

Design of both crystalline and amorphous porous molecular solids based on a large imine cage molecule.

1985 ◽  
Vol 82 ◽  
pp. 153-158 ◽  
Author(s):  
S.P. Velsko ◽  
R.M. Hochstrasser

2020 ◽  
Author(s):  
Eyal Wormser ◽  
Oded Nir ◽  
Eran Edri

<div> <div> <div> <p>The desalination of brackish water provides water to tens of millions of people around the world, but current technologies deplete much needed nutrients from the water, which is detrimental to both public health and agriculture. A selective method for brackish water desalination, which retains the needed nutrients, is electrodialysis (ED) using monovalent-selective cation exchange membranes (MVS-CEMs). However, due to the trade-off between membrane selectivity and resistance, most MVS-CEMs demonstrate either high transport resistance or low selectivity, which increase energy consumption and hinder the use of such membranes for brackish water desalination by ED. Here, we used molecular layer deposition (MLD) to uniformly coat CEMs with ultrathin layers of alucone. The positive surface charge of the alucone instills monovalent selectivity in the CEM. Using MLD enabled us to precisely control and minimize the selective layer thickness, while the flexibility and nanoporosity of the alucone prevent cracking and delamination. Under conditions simulating brackish water desalination, this compound provides monovalent selectivity with negligible added resistance—the smallest reported resistance for a monovalent-selective layer, to date—thereby alleviating the selectivity–resistance trade-off. Addressing the water–energy nexus, we show that using these membranes in ED will cut at least half of the energy required for selective brackish water desalination with current MVS-CEMs. </p> </div> </div> </div>


2019 ◽  
Author(s):  
Shengxian Cheng ◽  
Xiaoxia Ma, ◽  
Yonghe He ◽  
Jun He ◽  
Matthias Zeller ◽  
...  

We report a curious porous molecular crystal that is devoid of the common traits of related systems. Namely, the molecule does not rely on directional hydrogen bonds to enforce open packing; and it offers neither large concave faces (i.e., high internal free volume) to frustrate close packing, nor any inherently built-in cavity like in the class of organic cages. Instead, the permanent porosity (as unveiled by the X-ray crystal structure and CO<sub>2</sub> sorption studies) arises from the strong push-pull units built into a Sierpinski-like molecule that features four symmetrically backfolded (<b>SBF</b>) side arms. Each side arm consists of the 1,1,4,4-tetracyanobuta-1,3-diene acceptor (TCBD) coupled with the dimethylaminophenyl donor, which is conveniently installed by a cycloaddition-retroelectrocyclization (CA-RE) reaction. Unlike the poor/fragile crystalline order of many porous molecular solids, the molecule here readily crystallizes and the crystalline phase can be easily deposited into thin films from solutions. Moreover, both the bulk sample and thin film exhibit excellent thermal stability with the porous crystalline order maintained even at 200 °C. The intermolecular forces underlying this robust porous molecular crystal likely include the strong dipole interactions and the multiple C···N and C···O short contacts afforded by the strongly donating and accepting groups integrated within the rigid molecular scaffold.


ACS Omega ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 6826-6847 ◽  
Author(s):  
Asieh Sadat Kazemi ◽  
Ali Akbar Noroozi ◽  
Anousha Khamsavi ◽  
Ali Mazaheri ◽  
Seiyed Mossa Hosseini ◽  
...  

2021 ◽  
pp. 117081
Author(s):  
Mengru Duan ◽  
Zonglin Gu ◽  
Jose Manuel Perez-Aguilar

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasamin Bide ◽  
Marzieh Arab Fashapoyeh ◽  
Soheila Shokrollahzadeh

AbstractForward osmosis (FO) process has been extensively considered as a potential technology that could minimize the problems of traditional water desalination processes. Finding an appropriate osmotic agent is an important concern in the FO process. For the first time, a nonionic surfactant-based draw solution was introduced using self-assemblies of Tween 80 and choline chloride. The addition of choline chloride to Tween 80 led to micelles formation with an average diameter of 11.03 nm. The 1H NMR spectra exhibited that all groups of Tween 80 were interacted with choline chloride by hydrogen bond and Van der Waals’ force. The influence of adding choline chloride to Tween 80 and the micellization on its osmotic activity was investigated. Despite the less activity of single components, the average water flux of 14.29 L m‒2 h‒1 was obtained using 0.15 M of Tween 80-choline chloride self-assembly as draw solution in the FO process with DI water feed solution. Moreover, various concentrations of NaCl aqueous solutions were examined as feed solution. This report proposed a possible preparation of nonionic surfactant-based draw solutions using choline chloride additive with enhanced osmotic activities that can establish an innovative field of study in water desalination by the FO process.


Sign in / Sign up

Export Citation Format

Share Document