Phase field approach for nanoscale interactions between crack propagation and phase transformation

Nanoscale ◽  
2019 ◽  
Vol 11 (46) ◽  
pp. 22243-22247 ◽  
Author(s):  
Hossein Jafarzadeh ◽  
Valery I. Levitas ◽  
Gholam Hossein Farrahi ◽  
Mahdi Javanbakht

The phase field approach for the interaction of fracture and phase transformation is developed including scale effects and change in surface energy.

2021 ◽  
Vol 18 (2) ◽  
pp. 102-107
Author(s):  
Arunabha Mohan Roy

A short review on a thermodynamically consistent multiphase phase-field approach for virtual melting has been presented. The important outcomes of solid-solid phase transformations via intermediate melt have been discussed for HMX crystal. It is found out that two nanoscale material parameters and solid-melt barrier term in the phase-field model significantly affect the mechanism of PTs, induces nontrivial scale effects, and changes PTs behaviors at the nanoscale during virtual melting.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4430 ◽  
Author(s):  
Jingming Zhu ◽  
Jun Luo ◽  
Yuanzun Sun

The superior fracture toughness of zirconia is closely correlated with stress-induced martensitic phase transformation around a crack tip. In this study, a modified phase field (PF) model coupling phase transformation and fracture is proposed to study the fracture behavior and toughening effect of tetragonal zirconia polycrystal (TZP). The stress-induced tetragonal to monoclinic (t–m) phase transformation around a static or propagating crack is characterized with PF simulations. It is shown that the finite size and shape of the transformation zone under different loads and ambient temperatures can be well predicted with the proposed PF model. The phase transformation may decrease the stress level around the crack tip, which implies the toughening effect. After that, crack propagation in TZP is studied. As the stress field is perturbed by the phase transformation patterns, the crack may experience deflection and branching in the propagation process. It is found that the toughness of the grain boundaries (GBs) has important influences on the crack propagation mode. For TZP with strong GBs, the crack is more likely to propagate transgranularly while, for TZP with weak GBs, intergranular crack propagation is prevalent. Besides that, the crystal orientation and the external load can also influence the topology of crack propagation.


2017 ◽  
Vol 754 ◽  
pp. 153-156 ◽  
Author(s):  
Rainer Falkenberg

The fracture mechanics assessment of materials exposed to harmful environments requires the understanding of the interaction between the soluted species and the affected mechanical behaviour. With the introduction of a mass transport mechanism the entire problem is subjected to a time frame that dictates the time-dependent action of soluted species on mechanical properties. A numerical framework within the phase field approach is presented with an embrittlement-based coupling mechanism showing the influence on crack patterns and fracture toughness. Within the phase field approach the modeling of sharp crack discontinuities is replaced by a diffusive crack model facilitating crack initiation and complex crack topologies such as curvilinear crack patterns, without the requirement of a predefined crack path. The isotropic hardening of the elasto-plastic deformation model and the local fracture criterion are affected by the species concentration. This allows for embrittlement and leads to accelerated crack propagation. An extended mass transport equation for hydrogen embrittlement, accounting for mechanical stresses and deformations, is implemented. For stabilisation purposes a staggered scheme is applied to solve the system of partial differential equations. The simulation of showcases demonstrates crack initiation and crack propagation aiming for the determination of stress-intensity factors and crack-resistance curves.


2013 ◽  
Vol 102 (25) ◽  
pp. 251904 ◽  
Author(s):  
Valery I. Levitas ◽  
Mahdi Javanbakht

2010 ◽  
Vol 2010.23 (0) ◽  
pp. 94-95
Author(s):  
Kazunori Takayama ◽  
Noriyuki Miyazaki ◽  
Ryosuke Matsumoto ◽  
Shinya Taketomi

Author(s):  
Ehsan Moshkelgosha ◽  
Mahmood Mamivand

Abstract Shape memory ceramics (SMCs) are promising candidates for actuators in extreme environments such as high temperature and corrosive applications. Despite outstanding energy dissipation, compared to metallic shape memory materials, SMCs suffer from sudden brittle fracture. While the interaction of crack propagation and phase transformation in SMCs have been subject of several experimental and theoretical studies, mainly at macroscale, the fundamental understanding of the interaction of crack propagation dynamics with evolving martensitic transformation is poorly understood. In this work we use the phase field technique to fully couple the martensitic transformation to the variational formulation of brittle fracture. The model is parameterized for zirconia which experiences tetragonal to monoclinic transformation during crack propagation. For the mode I of fracture, opening mode, crack shows an unusual propagation path which indicates the effect of phase transformation on crack path. The model is efficiently capable of predicting the crack initiation as well as propagation. The results show the dramatic effect of phase transformation on fracture toughening and crack propagation path.


Sign in / Sign up

Export Citation Format

Share Document