Secondary structure drives self-assembly in weakly segregated globular protein–rod block copolymers

2020 ◽  
Vol 11 (17) ◽  
pp. 3032-3045
Author(s):  
Helen Yao ◽  
Kai Sheng ◽  
Jialing Sun ◽  
Shupeng Yan ◽  
Yingqin Hou ◽  
...  

Imparting secondary structure to the polymer block can drive self-assembly in globular protein–helix block copolymers, increasing the effective segregation strength between blocks with weak or no repulsion.

2014 ◽  
Vol 15 (4) ◽  
pp. 1248-1258 ◽  
Author(s):  
Christopher N. Lam ◽  
Minkyu Kim ◽  
Carla S. Thomas ◽  
Dongsook Chang ◽  
Gabriel E. Sanoja ◽  
...  

2002 ◽  
Vol 724 ◽  
Author(s):  
Elizabeth R. Wright ◽  
R. Andrew McMillan ◽  
Alan Cooper ◽  
Robert P. Apkarian ◽  
Vincent P. Conticello

AbstractTriblock copolymers have traditionally been synthesized with conventional organic components. However, triblock copolymers could be synthesized by the incorporation of two incompatible protein-based polymers. The polypeptides would differ in their hydrophobicity and confer unique physiochemical properties to the resultant materials. One protein-based polymer, based on a sequence of native elastin, that has been utilized in the synthesis of biomaterials is poly (Valine-Proline-Glycine-ValineGlycine) or poly(VPGVG) [1]. This polypeptide has been shown to have an inverse temperature transition that can be adjusted by non-conservative amino acid substitutions in the fourth position [2]. By combining polypeptide blocks with different inverse temperature transition values due to hydrophobicity differences, we expect to produce amphiphilic polypeptides capable of self-assembly into hydrogels. Our research examines the design, synthesis and characterization of elastin-mimetic block copolymers as functional biomaterials. The methods that are used for the characterization include variable temperature 1D and 2D High-Resolution-NMR, cryo-High Resolutions Scanning Electron Microscopy and Differential Scanning Calorimetry.


1999 ◽  
Author(s):  
S. A. Jenekhe ◽  
X. L. Chen

Author(s):  
Weihua Li ◽  
Xueying Gu

Since tremendous progress has been made, directed self-assembly (DSA) of block copolymers has been regarded as one of the most promising bottom-up lithography techniques. In particular, DSA has been successfully...


2020 ◽  
Vol 2 (11) ◽  
pp. 4893-4901
Author(s):  
Karthika Madathil ◽  
Kayla A. Lantz ◽  
Morgan Stefik ◽  
Gila E. Stein

2021 ◽  
Author(s):  
Wei Wen ◽  
Aihua Chen

Self-assembly of amphiphilic single chain Janus nanoparticles (SCJNPs) is a novel and promising approach to fabricate assemblies with diversified morphologies. However, the experimental research of the self-assembly behavior of SCJNPs...


Soft Matter ◽  
2021 ◽  
Author(s):  
Alexander Kantardjiev

We carried out a series of coarse-grained molecular dynamics liposome-copolymer simulations with varying extent of copolymer concentration in an attempt to understand the effect of copolymer structure and concentration on vesicle self-assembly and stability.


Sign in / Sign up

Export Citation Format

Share Document