scholarly journals Structure and electrochemical performance modulation of a LiNi0.8Co0.1Mn0.1O2 cathode material by anion and cation co-doping for lithium ion batteries

RSC Advances ◽  
2019 ◽  
Vol 9 (63) ◽  
pp. 36849-36857 ◽  
Author(s):  
Rong Li ◽  
Yong Ming ◽  
Wei Xiang ◽  
Chunliu Xu ◽  
Guilin Feng ◽  
...  

Ni-rich layered transition metal oxides show great energy density but suffer poor thermal stability and inferior cycling performance, which limit their practical application.

2017 ◽  
Vol 46 (38) ◽  
pp. 12876-12883 ◽  
Author(s):  
Saurabh Singh ◽  
Nanasaheb M. Shinde ◽  
Qi Xun Xia ◽  
Chandu V. V. M. Gopi ◽  
Je Moon Yun ◽  
...  

A NiCoMn-LDH (10%)//rGO asymmetric supercapacitor device with 574 Wh kg−1 energy density at 749.9 W kg−1 power density and 89.4% retention even after 2500 cycles has been explored.


2016 ◽  
Vol 4 (20) ◽  
pp. 7689-7699 ◽  
Author(s):  
Peiyu Hou ◽  
Guoran Li ◽  
Xueping Gao

A concentration-gradient doping strategy is introduced into micron-sized spherical Li-rich layered oxides. As a result, they exhibit high volumetric energy density, long cycle life and enhanced thermal stability.


Liquids ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 60-74
Author(s):  
Xin Ma ◽  
Peng Zhang ◽  
Huajun Zhao ◽  
Qingrong Wang ◽  
Guangzhao Zhang ◽  
...  

Widening the working voltage of lithium-ion batteries is considered as an effective strategy to improve their energy density. However, the decomposition of conventional aprotic electrolytes at high voltage greatly impedes the success until the presence of high concentration electrolytes (HCEs) and the resultant localized HCEs (LHCEs). The unique solvated structure of HCEs/LHCEs endows the involved solvent with enhanced endurance toward high voltage while the LHCEs can simultaneously possess the decent viscosity for sufficient wettability to porous electrodes and separator. Nowadays, most LHCEs use LiFSI/LiTFSI as the salts and β-hydrofluoroethers as the counter solvents due to their good compatibility, yet the LHCE formula of cheap LiPF6 and high antioxidant α-hydrofluoroethers is seldom investigated. Here, we report a unique formula with 3 mol L−1 LiPF6 in mixed carbonate solvents and a counter solvent α-substituted fluorine compound (1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropylether). Compared to a conventional electrolyte, this formula enables dramatic improvement in the cycling performance of LiCoO2//graphite cells from approximately 150 cycles to 1000 cycles within the range of 2.9 to 4.5 V at 0.5 C. This work provides a new choice and scope to design functional LHCEs for high voltage systems.


2013 ◽  
Vol 1540 ◽  
Author(s):  
Chia-Yi Lin ◽  
Chien-Te Hsieh ◽  
Ruey-Shin Juang

ABSTRACTAn efficient microwave-assisted polyol (MP) approach is report to prepare SnO2/graphene hybrid as an anode material for lithium ion batteries. The key factor to this MP method is to start with uniform graphene oxide (GO) suspension, in which a large amount of surface oxygenate groups ensures homogeneous distribution of the SnO2 nanoparticles onto the GO sheets under the microwave irradiation. The period for the microwave heating only takes 10 min. The obtained SnO2/graphene hybrid anode possesses a reversible capacity of 967 mAh g-1 at 0.1 C and a high Coulombic efficiency of 80.5% at the first cycle. The cycling performance and the rate capability of the hybrid anode are enhanced in comparison with that of the bare graphene anode. This improvement of electrochemical performance can be attributed to the formation of a 3-dimensional framework. Accordingly, this study provides an economical MP route for the fabrication of SnO2/graphene hybrid as an anode material for high-performance Li-ion batteries.


CrystEngComm ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1705-1711 ◽  
Author(s):  
Shuai Zhang ◽  
Li Zhang ◽  
Guancheng Xu ◽  
Xiuli Zhang ◽  
Aihua Zhao

Co-V2O3-24 yolk–shell nanospheres were synthesized via a solvothermal treatment and subsequent calcination. The electrochemical performance of Co-V2O3-24 is greatly improved because of Co-doping and the novel hierarchical yolk–shell structure.


2019 ◽  
Vol 327 ◽  
pp. 135018 ◽  
Author(s):  
Peipei Pang ◽  
Zheng Wang ◽  
Xinxin Tan ◽  
Yaoming Deng ◽  
Junmin Nan ◽  
...  

2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lu Wang ◽  
Junwei Han ◽  
Debin Kong ◽  
Ying Tao ◽  
Quan-Hong Yang

Abstract Lithium-ion batteries (LIBs), which are high-energy-density and low-safety-risk secondary batteries, are underpinned to the rise in electrochemical energy storage devices that satisfy the urgent demands of the global energy storage market. With the aim of achieving high energy density and fast-charging performance, the exploitation of simple and low-cost approaches for the production of high capacity, high density, high mass loading, and kinetically ion-accessible electrodes that maximize charge storage and transport in LIBs, is a critical need. Toward the construction of high-performance electrodes, carbons are promisingly used in the enhanced roles of active materials, electrochemical reaction frameworks for high-capacity noncarbons, and lightweight current collectors. Here, we review recent advances in the carbon engineering of electrodes for excellent electrochemical performance and structural stability, which is enabled by assembled carbon architectures that guarantee sufficient charge delivery and volume fluctuation buffering inside the electrode during cycling. Some specific feasible assembly methods, synergism between structural design components of carbon assemblies, and electrochemical performance enhancement are highlighted. The precise design of carbon cages by the assembly of graphene units is potentially useful for the controlled preparation of high-capacity carbon-caged noncarbon anodes with volumetric capacities over 2100 mAh cm−3. Finally, insights are given on the prospects and challenges for designing carbon architectures for practical LIBs that simultaneously provide high energy densities (both gravimetric and volumetric) and high rate performance.


2020 ◽  
Vol 3 (3) ◽  
pp. 284-292 ◽  
Author(s):  
Adele Birrozzi ◽  
Jakob Asenbauer ◽  
Thomas E. Ashton ◽  
Alexandra R. Groves ◽  
Dorin Geiger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document