Application and testing of a framework for characterizing the quality of scientific reasoning in chemistry students' writing on ocean acidification

2019 ◽  
Vol 20 (3) ◽  
pp. 484-494 ◽  
Author(s):  
Alena Moon ◽  
Robert Moeller ◽  
Anne Ruggles Gere ◽  
Ginger V. Shultz

Science educators recognize the need to teach scientific ways of knowing and reasoning in addition to scientific knowledge. However, characterizing and assessing scientific ways of knowing and reasoning is challenging. Writing-to-learn offers one way of eliciting and supporting students’ reasoning; further, writing serves to externalize and make traceable students’ reasoning. For this reason, it is a useful formative assessment of scientific reasoning. The utility hinges on researchers’ ability to understand what students can do and think from their writing. Given the challenges in assessing students’ writing, this research offers an adapted framework for assessing students’ scientific reasoning evident in writing. This work will introduce an adapted framework and show an application to general chemistry students’ argumentative writing about ocean acidification. We provide evidence that this framework can be used to validly estimate the quality of students’ reasoning. We argue that this framework offers some affordances that overcome challenges reported in the literature. It serves to define scientific reasoning in a domain-general way by breaking it down into its components, but in a way that can produce a composite score that tells us about how students reason using chemistry content. Further, the framework provides a way to characterize the scientific accuracy of students’ reasoning that can inform instructors’ treatment of alternative conceptions.

2016 ◽  
Vol 17 (4) ◽  
pp. 878-892 ◽  
Author(s):  
Li Ye ◽  
Constantine Shuniak ◽  
Razanne Oueini ◽  
Jenay Robert ◽  
Scott Lewis

A well-established literature base identifies a portion of students enrolled in post-secondary General Chemistry as at-risk of failing the course based on incoming metrics. Learning about the experiences and factors that lead to this higher failure rate is essential toward improving retention in this course. This study examines the relationship between study habits and academic performance for at-risk students in General Chemistry. Students who were in the bottom quartile of SAT math scores were identified as at-risk students. The study habits of General Chemistry students, both those identified as at-risk and those not identified were measured by text message inquiries. The text message asked ‘‘Have you studied for General Chemistry I in the past 48 hours? If so, how did you study?” twice a week throughout a semester. Student responses to the messages were used to calculate the frequency of studying throughout the term. The results from a multiple regression analysis showed that high frequency of studying could mitigate the difference between at-risk and non-at-risk students on final exam scores. Additionally, the quality of studying for six at-risk students was analyzed by student interviews in concert with their text message responses. The results indicated that the quality of studying is not necessarily linked to frequency of studying and both quality and frequency can play a role in at-risk students' academic performance. The results presented offer a path for at-risk students to succeed in General Chemistry and the methodology presented offers a potential avenue for evaluating future efforts to improve student success.


2015 ◽  
Vol 16 (2) ◽  
pp. 273-282 ◽  
Author(s):  
K. Christopher Smith ◽  
Savannah Villarreal

This article reports on the types of views and misconceptions uncovered after assessing 155 freshman general chemistry students on the concept of particle position during the reversible physical change of melting, using the Melting Cycle Instrument, which illustrates particulate-level representations of a melting–freezing cycle. Animations involving particulate-level representations of phase changes including melting and freezing were viewed and discussed, and the students were assessed a second time, on the concept of particle position during the reversible physical change of dissolving, using the Dissolving Cycle Instrument, which illustrates particulate-level representations of a dissolving-solvent evaporation cycle. Overall, the results of the assessments showed that some misconceptions did remain after viewing and discussing the animations, and that the use of the animations had no effect on the students' views on the movement of particles within the liquid.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Olivia H Wilkins ◽  
Camillus F Buzard

A major challenge in teaching is helping students integrate course concepts to understand the big picture of a field and apply those concepts in new situations. To address this challenge in a tutorial course about astrochemistry (taught by graduate students to chemistry undergraduates), we implemented a progressive writing assignment that culminated in a final presentation. In the progressive writing assignment, students chose an astrochemistry topic they found interesting to be the subject of three sequential papers, which became the basis for their presentations. The purpose of this assignment was to gradually introduce chemistry students to research areas in astronomy, which is by nature outside the general chemistry curriculum, while also providing students with regular feedback. Over the course of the assignment, students applied key themes in the course—significance of astrochemistry research, research methods, and chemistry in astronomical environments—separately to their chosen topics before explaining in the final presentation how these different aspects of astrochemistry work together. By incorporating stories and anaologies, rather than just facts, students gave presentations that were accessible to a novice audience. As a result, students explained broader impacts of astrochemistry research, rather than just focusing on results, and they entertained questions with answers that went beyond clarification of the material discussed.


1996 ◽  
Vol 7 (2) ◽  
pp. 69-75 ◽  
Author(s):  
Robert J. Sternberg ◽  
Tamara Gordeeva

This study presents an analysis of psychologists' implicit theories of what makes an article influential in psychology The study opens with a review of some alternative approaches to assessing the influence of articles Next, the article discusses alternative conceptions of influence Then a study that assesses the factors underlying impact is described Six factors are identified Quality of Presentation, Theoretical Significance, Practical Significance, Substantive Interest, Methodological Interest, and Value for Future Research These findings are then discussed in terms of the theories presented earlier


Author(s):  
Michael N. Petterson ◽  
Solaire A. Finkenstaedt-Quinn ◽  
Anne Ruggles Gere ◽  
Ginger V. Shultz

Student affect is an important factor in the learning process and may be especially important in gateway courses such as organic chemistry. Students’ recognition of the relevance of the content they are learning and interactions with their peers can support their motivation to learn. Herein, we describe a study focused on how Writing-to-Learn assignments situate organic chemistry content within relevant contexts and incorporate social elements to support positive student interactions with organic chemistry. These assignments incorporate rhetorical elements—an authentic context, role, genre, and audience—to support student interest and demonstrate the relevance of the content. In addition, students engage in the processes of peer review and revision to support their learning. We identified how the authentic contexts and peer interactions incorporated into two Writing-to-Learn assignments supported students’ interactions with the assignments and course content by analyzing student interviews and supported by feedback survey responses. Our results indicate that assignments incorporating these elements can support student affect and result in students’ perceived learning, but that there should be careful consideration of the relevance of the chosen contexts with respect to the interests of the students enrolled in the course and the complexity of the contexts.


2008 ◽  
pp. 14-29
Author(s):  
Kevin F. Downing ◽  
Jennifer K. Holtz

The practical application of theory, or praxis, in science education is arguably less straightforward today than it has been in preceding generations. While formal education and learning theories have been promulgated for close to 100 years, the changing disposition and balance of academia, and the consequent dissemination of questionable and unverifiable social theories, have led to a more ambiguous discussion and application of au courant learning theories to science education. Much of what the authors consider the detrimental entanglement in academia of definitions and educational theories about science occurs at the confluence of different professional attitudes and motivation. Scientists are generally complacent in terms of championing and defending their own core philosophy and epistemology, and a scientist’s professional rewards and efforts rarely consist of debunking critics in the so-called other ‘ways of knowing’ (see the Science Wars website and the Sokal Affair for a droll exception at http://members.tripod.com/ScienceWars/). The defense of scientific reasoning is not what scientists focus on by training; thus, this is an area that almost certainly needs more systematic attention and treatment in science curricula. By contrast, science’s detractors in the humanities, social sciences and even education, find professional incentive and marketable topic in assailing the science colossus. Most notably, postmodernism with its socially relativistic and radical constructivist theories, replete with the denial of objective truth, have attempted to undermine science, or as Fishman (1996) noted, are attempting to put science on an “indefinite furlough” (p. 95). Like it or not, the science community is at war with nihilistic ideologies and one of the battle grounds is pedagogy, a deliberation that extends to online science learning environments.


Sign in / Sign up

Export Citation Format

Share Document