dolomitic marble
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 1)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Mumtaz M. Shah ◽  
Saifullah Afridi ◽  
Emad U. Khan ◽  
Hamad Ur Rahim ◽  
Muhammad R. Mustafa

In the present study, an attempt has been made to establish the relationship between diagenetic alterations resulting from magmatic intrusions and their impact on the reservoir properties of the Devonian Khyber Limestone (NW Pakistan). Field observations, petrographic studies, mineralogical analyses, porosity-permeability data, and computed tomography were used to better understand the diagenetic history and petrophysical property evolution. Numerous dolerite intrusions are present in the studied carbonate successions, where the host limestone was altered to dolomite and marble, and fractures and faults developed due to the upwelling of the magmatic/hydrothermal fluids along pathways. Petrographic studies show an early phase of coarse crystalline saddle dolomite (Dol. I), which resulted from Mg-rich hydrothermal fluids originated from the dolerite dykes. Coarse crystalline marble formed due to contact metamorphism at the time of dolerite emplacement. The second phase of dolomitisation (Dol. II) postdates the igneous intrusions and was followed by dedolomitisation, dissolution, and cementation by meteoric calcite. Stable isotope studies likewise confirm two distinct dolomite phases. Dol. I exhibits more depleted δ18O (-15.8 to -9.1‰ V-PDB) and nondepleted δ13C (-2.05 to +1.85‰ V-PDB), whereas Dol. II shows a relatively narrow range of depleted δ18O (-13.9 to -13.8‰) signatures and nondepleted δ13C (+1.58 to +1.89‰ V-PDB). Dolomitic marble shows a marked depletion in δ18O and δ13C (-13.7 to -8.5‰ and -2.3 to 1.95‰, respectively). The initial phase of dolomitisation (Dol. I) did not alter porosity (5.4-6.6%) and permeability (0.0-0.1 mD) with respect to the unaltered limestone (5.6-6.9%; 0.1-0.2 mD). Contact metamorphism resulted in a decrease in porosity and permeability (3.3-4.7%; 0.1 mD). In contrast, an increase in porosity and permeability in Dol. II (7.7-10.5%; 0.8-2.5 mD) and dolomitic marble (6.6-14.7%; 8.2-13.3 mD) is linked to intercrystalline porosity and retainment of fracture porosity in dolomitic marble. Late-stage dissolution and dedolomitization also positively affected the reservoir properties of the studied successions. In conclusion, the aforementioned results reveal the impact of various diagenetic processes resulting from magmatic emplacement and their consequent reservoir heterogeneity.


2021 ◽  
Author(s):  
Sanchit Garg ◽  
Pradeep Agarwal ◽  
Pushpendra Ranawat ◽  
Parminder Kaur ◽  
Amritpaul Singh ◽  
...  

<p>Rajnagar Marble, occurring around Rajnagar and Kankroli towns in Rajsamand district of south-central Rajasthan make up the largest marble deposits in India. Rajnagar Marble belongs to late Paleoproterozoic Aravalli Supergroup.  It is mostly white, coarse-grained and compact dolomitic marble. Mining is currently being carried out at several, small to medium-sized, open quarries using both conventional and mechanized operations. Although the Rajnagar Marble has been extensively used in archaeological monuments for centuries, it received recognition since the construction of spectacularly carved embankment (Nau-Chowky) of the Lake Rajsamand built during the period 1662-1676 CE. Its use has been recorded in the 8<sup>th</sup> century Eklingji Temple and numerous other temples in Udaipur and vicinity. Besides temples, embankments, step-well constructions, Rajnagar Marble was preferred for carving of idols of various Hindu deities, including the famous 12<sup>th</sup> century Palasma 7-horse drawn chariot Sun idol with nine planets revolving around it. But use of this Dev-Patthar (God's Stone), was avoided for flooring and private dwellings of humans in keeping with the Hindu mythological beliefs. Hence for the residential buildings, Rajnagar Marble was popularly used as a unique ground-in-hand-mill-and-sieved-through-muslin-sieve marble powder-lime paste (~100-micron size) to give the walls, pillars, lanterns, or even floors the "marble-finish". An intangible heritage process typical and unique of the erstwhile Rajputana.  Most palaces and havelies of Mewar area, including the five palaces of Udaipur namely, the City Palace Complex, Jagniwas (now the Taj Lake Palace Hotel), Jag Mandir, Lakshmi Vilas Palace and the Sajjangarh (Monsoon Palace) were all built partly in Rajnagar Marble stone, but mostly with marble powder-lime paste finish on lime-sand-quartzite masonry works.  Numerous architectural sites such as Moti Mahal, embankments of Fateh Sagar Lake and Rajsamand Lake, Eklingji Temple, Jagdish Temple, Saheliyon-ki-Badi, cenotaphs of the Royal family members at Ayad (1620 CE onwards) were built of Rajnagar Marble.</p><p>The low water absorption, high bulk density and high compressive, shearing and tensile strength of the Rajnagar Marble, and its ‘blockability’ made it technically suitable for monuments that have sustained for five centuries or more, with no signs of weathering and discoloration. The Rajnagar Marble entered the global market in the later 20<sup>th</sup> century with its export to various countries including the Middle East and Japan. At present, it is extensively used in building and handicraft industry and is also famous for contemporary artworks. In light of these variety of applications of the Rajnagar Marble, we propose ‘Rajnagar Marble’ for the designation of ‘<strong>Global Heritage Stone Resource</strong>’.</p>


2020 ◽  
Vol 10 ◽  
pp. 102
Author(s):  
Phillips Reuben Ikhane ◽  
Olalekan Olayiwola Oyebolu ◽  
Afolabi Omotayo Alaka

Integration of X-ray fluor escence and stable isotope spectrometric techniques for quality assessment and provenance study of exposed marble deposit at Fakunle Quarry, Ikpeshi, South Western Nigeria constitute the fundamental aims of this research. Fourteen fresh (14) marble samples obtained at different localities within the quarry were subjected to geochemical and isotopic analyses to ascertain the quantitative abundance of major oxides and stable isotopes using X-Ray Fluorescence and Thermo Fisher mass spectrometer respectively. The major oxides revealed by XRF analysis of the marble samples are CaO, MgO, SiO2, Al2O3, Fe2O3 and Na2O with percentage composition ranging between 11.66 – 13.25, 7.75 – 9.65, 41.36 – 47.55, 12.36 – 15.23, 7.79 – 10.55 and 1.44 – 1.75respectively. Na2O + K2O value ranges between 1.48 and 1.78.The classification of marble in relation to percentage of calcite-dolomite indicate a percentage range of -5 to 4% and 93-103% for Calcite and Dolomite respectively. Chemical Index of Alteration (CIA) ranges from 45.16 to 51.59 % and Chemical Index of Weathering (CIW) ranges from 46.19 to 52.30 %. Stable isotope ( ? –180) of marble ranges from -10.50 to -7.00 with a corresponding value from 25.50 to 55.33.Interpretation of the overall results indicates an impure quartz-rich dolomitic marble; metamorphosed from a low carbonate sedimentary/meta sedimentary protolith which shallowly precipitated within a passive marginal marine environment under humid condition. The high silica impurity can however be attributed to the inordinate influx of terrigenous sediments during the precipitation process. Weathering effect is minimal on the marble deposit. Conclusively, strong correlation is apparent between the obtained geochemical result and the basement geology of the study area.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 828
Author(s):  
Jungrae Noh ◽  
Changyeob Kim ◽  
Vinod O. Samuel ◽  
Yirang Jang ◽  
Seung-Ik Park ◽  
...  

In this contribution, we report the metasomatic characteristics of a lamprophyre dyke–marble contact zone from the Hongseong–Imjingang belt along the western Gyeonggi Massif, South Korea. The lamprophyre dyke intruded into the dolomitic marble, forming a serpentinized contact zone. The zone consists of olivine, serpentine, calcite, dolomite, biotite, spinel, and hematite. Minor F and Cl contents in the serpentine and biotite indicate the composition of the infiltrating H2O-CO2 fluid. SiO2 (12.42 wt %), FeO (1.83 wt %), K2O (0.03 wt %), Sr (89 ppm), U (0.7 ppm), Th (1.44 ppm), and rare earth elements (REEs) are highly mobile, while Zr, Cr, and Ba are moderately mobile in the fluid. Phase equilibria modelling suggests that the olivine, spinel, biotite, and calcite assemblage might be formed by the dissolution of dolomite at ~700 °C, 130 MPa. Such modelling requires stable diopside in the observed conditions in the presence of silica-saturated fluid. The lack of diopside in the metasomatized region is due to the high K activity of the fluid. Our log activity K2O (aK2O)–temperature pseudosection shows that at aK2O~−40, the olivine, spinel, biotite, and calcite assemblage is stable without diopside. Subsequently, at ~450 °C, 130 MPa, serpentine is formed due to the infiltration of H2O during the cooling of the lamprophyre dyke. This suggests that hot H2O-CO2 fluids with dissolved major and trace elements infiltrated through fractures, grain boundaries, and micron-scale porosity, which dissolved dolomite in the marble and precipitated the observed olivine-bearing peak metasomatic assemblage. During cooling, exsolved CO2 could increase the water activity to stabilize the serpentine. Our example implies that dissolution-reprecipitation is an important process, locally and regionally, that could impart important textural and geochemical variations in metasomatized rocks.


2020 ◽  
Vol 60 ◽  
pp. 163-179
Author(s):  
Sameer Poudel ◽  
Lok Mani Oli ◽  
Lalu P. Paudel

Geological mapping was carried out in the Barpak-Bhachchek area of the Daraudi River valley, Gorkha district, West-Central Nepal for structural analysis. The area comprises rocks of the Higher Himalayan Crystalline and the Lesser Himalayan Sequence.  Pelitic and psammitic schist, quartzite, calc-quartzite, dolomitic marble, graphitic schist, gneiss are the main rock types within the Lesser Himalayan Sequence,  whereas banded gneiss and quartzite form a significant portion of the Higher Himalayan Crystalline in the study area. The area is affected by poly-phase deformation. Lesser Himalayan Sequence has suffered five deformational phases (DL1-DL2, D3-D5) whereas the Higher Himalayan Crystalline has suffered four deformational events (DH1, D3-D5). The Lesser Himalayan Sequence lying to the northern limb of the Gorkha-Kuncha Anticlinorium is contort into doubly plunging to dome-and-basin-like en echelon type of non-cylindrical folds as Baluwa Dome and Pokharatar Basin (DL2 and D4). The direction of shearing as indicated by shear sense indicators (C' Shear band and Mica fish) is top-to-south coinciding with regional sense of shear related to the MCT propagation. The dynamic recrystallization direction, obtained from rock dominant with phyllosilicate minerals is top-to-south and coincides with mineral lineation and indicate the mineral lineation is contemporary with dynamic recrystallization during the MCT propagation.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 418 ◽  
Author(s):  
Ying Jiang ◽  
Guanghai Shi ◽  
Liguo Xu ◽  
Xinling Li

The historic Yinggelike nephrite jade deposit in the Altyn Tagh Mountains (Xinjiang, NW China) is renowned for its gem-quality nephrite with its characteristic light-yellow to greenish-yellow hue. Despite the extraordinary gemological quality and commercial significance of the Yinggelike nephrite, little work has been done on this nephrite deposit, due to its geographic remoteness and inaccessibility. This contribution presents the first systematic mineralogical and geochemical studies on the Yinggelike nephrite deposit. Electron probe microanalysis, X-ray fluorescence (XRF) spectrometry, inductively coupled plasma mass spectrometry (ICP-MS) and isotope ratio mass spectrometry were used to measure the mineralogy, bulk-rock chemistry and stable (O and H) isotopes characteristics of samples from Yinggelike. Field investigation shows that the Yinggelike nephrite orebody occurs in the dolomitic marble near the intruding granitoids. Petrographic studies and EMPA data indicate that the nephrite is mainly composed of fine-grained tremolite, with accessory pargasite, diopside, epidote, allanite, prehnite, andesine, titanite, zircon, and calcite. Geochemical studies show that all nephrite samples have low bulk-rock Fe/(Fe + Mg) values (0.02–0.05), as well as low Cr (0.81–34.68 ppm), Co (1.10–2.91 ppm), and Ni (0.52–20.15 ppm) contents. Chondrite-normalized REE patterns of most samples exhibit strong to moderate negative Eu anomalies (0.04–0.67), moderate LREE enrichments, nearly flat HREE patterns, and low ΣREE contents (2.16–11.25 ppm). The nephrite samples have δ18O and δD values of 5.3 to 7.4‰ and –74.9 to –86.7‰, respectively. The mineralogy, bulk-rock chemistry, and O–H isotope characteristics are consistent with the dolomite-related nephrite classification. Based on mineral paragenetic relationships, three possible mineral crystallization stages are recognized: (1) diopside formed by prograde metasomatism; (2) nephrite jade formed by retrograde metasomatism and replacement of Stage I anhydrous minerals; (3) hydrothermal alteration after the nephrite formation. Features of transition metal contents indicate that the color of the Yinggelike nephrite is likely to be controlled by the Fe2+, Fe3+, and Mn. Yellowish color is related to Mn and especially Fe3+, while greenish color is related to Fe2+. Our new mineralogical and geochemical results on the Yinggelike nephrite provide better constraints on the formation of other nephrite deposits in the Altyn Tagh Mountains, and can facilitate future nephrite prospecting and research in the region.


2020 ◽  
Vol 58 (2) ◽  
pp. 183-190
Author(s):  
Marian V. Lupulescu ◽  
Alix M. Ehlers ◽  
John M. Hughes ◽  
David G. Bailey

ABSTRACT Warwickite has been discovered in the Edwards and Balmat #3 mines in the Balmat-Edwards mining district, St. Lawrence County, New York, located in the Adirondack Lowlands. The samples from the two mines are similar in chemistry and atomic arrangement but differ chemically from previously described samples; they are among the most Fe-poor samples described to date. The warwickite in the Edwards Mine sample occurs as 1–2 mm-diameter green crystals associated with pink spinel, forsterite, phlogopite, and pyrite in an impure dolomitic marble, whereas warwickite in the specimens from the Balmat #3 mine, approximately 10 km distant, occurs as brown to amber colored, slender, elongate, millimeter-size crystals in a calcitic marble in association with pink spinel, phlogopite, anhydrite, pyrite, and galena. Chemical analyses of the two specimens by electron microprobe show similar empirical formulas of (Mg1.43Ti0.36Al0.18Cr3+0.02Zr0.01)Σ2.00B0.98O4 (Edwards Mine) and (Mg1.39Ti0.40Al0.18Cr3+0.01Zr0.01Fe2+0.01)Σ2.00B0.94O4 (Balmat mine). The atomic arrangement of a specimen from each mine was determined, and the high-precision refinements provide new insight into the warwickite structure. The M1 site in warwickite is split into two sites to accommodate two occupants with differing bonding requirements; the M1 site contains Mg and the M1′ site hosts Ti, with the two sites being separated by approximately 0.2 Å. The optimized structural formula for both warwickite samples is similar to [M1(Mg0.84Al0.14Ti0.024+)2.74M1′(Ti0.914+Mn0.082+Mg0.01)1.30]Σ4.04M2(Mg0.86Al0.10Ti0.044+)4.00B4O16], demonstrating ordering of Mg at M1 and M2 and Ti at M1′. The site-splitting demonstrates how divalent Mg and tetravalent Ti can exist at a site in solid solution by ordering the two cations at split sites.


2020 ◽  
Vol 486 (1) ◽  
pp. 229-249 ◽  
Author(s):  
Joseph T. Hannibal ◽  
Lorraine Schnabel

AbstractBy virtue of its use in iconic monuments and historic buildings in the USA, Cockeysville marble, a dolomitic to calcitic lower Paleozoic (Cambrian/Ordovician) marble quarried in Baltimore County and adjacent areas in Maryland, is proposed as a potential Global Heritage Stone Resource. The most important use of this stone was for the Washington Monument in Washington, DC whose construction began in 1848; the second most important use was for the 108 columns of the United States Capitol's wings, completed in 1868. It was also used for two of the oldest major marble monuments in the USA, Baltimore's Battle Monument (dedicated in 1827) and Washington Monument (completed in 1829), as well as Baltimore's City Hall, Buffalo's Adkins Art Museum, Detroit's Fisher Building and parts of St Patrick's Cathedral in New York City. During the nineteenth century white Cockeysville was most desired, but a colourful variety, Mar Villa marble, was also used in the first decades of the twentieth century. Cockeysville marble is no longer quarried for dimension stone. All Cockeysville used outdoors has weathered to a lesser or great extent, but early testing indicating that the dolomitic marble would be more durable has proved to be true.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 554 ◽  
Author(s):  
Peck ◽  
Eppich

Mesoproterozoic magnesite deposits are found associated with dolomitic marble and intercalated with metasedimentary rocks of the Grenville Supergroup in the granulite facies Morin terrane (Grenville Province, Quebec). This study examines one of the remaining ore deposits exposed on the surface (at the Dobbie mine), and presents stable isotope and mineralogical data for a marine evaporitic origin. The magnesite ore zone has δ18O(Mag) = 25.5 ± 0.4‰ (VSMOW) and δ13C(Mag) = 1.7 ± 0.2‰ (VPDB; n = 7), while surrounding dolomitic marble has δ18O(Dol) = 24.2 ± 0.6‰ and δ13C(Dol) = −0.2 ± 0.7‰ (n = 11). These values are at the high end of the range for other Morin terrane marbles, and this and sharp transitions in stable isotope ratios between lithologies argue for preservation of evaporitic enrichment in δ18O and δ13C. Boron isotope ratios (δ11B = 15.5‰ to 22.7‰) are also consistent with a marine evaporite origin. Identifying evaporitic protoliths in metasedimentary rocks is important for determining pre-metamorphic depositional environments, and in this case links the sedimentary setting of the Morin terrane to the Adirondack Lowlands (New York, NY, USA). The identification of the Kilmar magnesite deposits as evaporitic also has implications for the formation of sedimentary exhalative base metal deposits in the Grenville Supergroup.


Sign in / Sign up

Export Citation Format

Share Document