scholarly journals Silicon clusters with six and seven unsubstituted vertices via a two-step reaction from elemental silicon

2019 ◽  
Vol 10 (39) ◽  
pp. 9130-9139 ◽  
Author(s):  
Lorenz J. Schiegerl ◽  
Antti J. Karttunen ◽  
Wilhelm Klein ◽  
Thomas F. Fässler

A synthetic shortcut to molecules that contain several unprotected silicon atoms comprising the whole range from localized to delocalized Si–Si bonds.


2010 ◽  
Vol 82 (3) ◽  
pp. 595-602 ◽  
Author(s):  
Kai Abersfelder ◽  
David Scheschkewitz

An account is given of our efforts in the synthesis of homo- and heterocyclic silanes via occasionally stable unsymmetrically substituted disilene intermediates of the A2Si=Si(A)B type that are accessible from a disila analog of a vinyl lithium. This approach is particularly powerful in the preparation of three-membered rings such as cyclotrisilanes with a residual functionality that can be either electro- or nucleophilic in nature and can even give rise to ring-expanded products with preserved Si=Si moiety. The intermediacy of transient silylenes in some of these transformations is discussed as well as the structural effects of the electronic properties of the residual functional group. The relevance of these studies for the understanding of Si(100) surface annealed species during the epitaxial growth of elemental silicon is pointed out, and the potential of the methodology for the synthesis of unusual polycyclic silicon clusters is noted.



Inorganics ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 107 ◽  
Author(s):  
Naohiko Akasaka ◽  
Shintaro Ishida ◽  
Takeaki Iwamoto

Molecular silicon clusters with unsubstituted silicon vertices (siliconoids) have received attention as unsaturated silicon clusters and potential intermediates in the gas-phase deposition of elemental silicon. Investigation of behaviors of the siliconoids could contribute to the greater understanding of the transformation of silicon clusters as found in the chemical vapor deposition of elemental silicon. Herein we reported drastic transformation of a Si8R8 siliconoid to three novel silicon clusters under mild thermal conditions. Molecular structures of the obtained new clusters were determined by XRD analyses. Two clusters are siliconoids that have unsaturated silicon vertices adopting unusual geometries, and another one is a bis(disilene) which has two silicon–silicon double bonds interacted to each other through the central polyhedral silicon skeleton. The observed drastic transformation of silicon frameworks suggests that unsaturated molecular silicon clusters have a great potential to provide various molecular silicon clusters bearing unprecedented structures and properties.



1990 ◽  
Author(s):  
Tapio T. Rantala ◽  
Mark I. Stockman ◽  
Daniel A. Jelski ◽  
Thomas F. George
Keyword(s):  


1990 ◽  
Author(s):  
Tapio T. Rantala ◽  
Mark I. Stockman ◽  
Daniel A. Jelski ◽  
Thomas F. George


2021 ◽  
Author(s):  
Krati Joshi ◽  
Ashakiran Maibam ◽  
Sailaja Krishnamurty

Silicon carbide clusters are significant due to their predominant occurrence in meteoric star dust, particularly in carbon rich asymptotic giant branch stars. Of late, they have also been recognized as...



1996 ◽  
Vol 261 (3) ◽  
pp. 346-352 ◽  
Author(s):  
Takehide Miyazaki ◽  
Tsuyoshi Uda ◽  
Ivan Štich ◽  
Kiyoyuki Terakura


1999 ◽  
Vol 568 ◽  
Author(s):  
Arthur F.W. Willoughby ◽  
Janet M. Bonar ◽  
Andrew D.N. Paine

ABSTRACTInterest in diffusion processes in SiGe alloys arises from their potential in HBT's, HFET's, and optoelectronics devices, where migration over distances as small as a few nanometres can be significant. Successful modelling of these processes requires a much improved understanding of the mechanisms of self- and dopant diffusion in the alloy, although recent progress has been made. It is the purpose of this review to set this in the context of diffusion processes in elemental silicon and germanium, and to identify how this can help to elucidate behaviour in the alloy. Firstly, self diffusion processes are reviewed, from general agreement that self-diffusion in germanium is dominated by neutral and acceptor vacancies, to the position in silicon which is still uncertain. Germanium diffusion in silicon, however, appears to be via both vacancy and interstitial processes, and in the bulk alloy there is evidence for a change in dominant mechanism at around 35 percent germanium. Next, a review of dopant diffusion begins with Sb, which appears to diffuse in germanium by a mechanism similar to self-diffusion, and in silicon via monovacancies also, from marker layer evidence. In SiGe, the effects of composition and strain in epitaxial layers on Si substrates are also consistent with diffusion via vacancies, but questions still remain on the role of charged defects. The use of Sb to monitor vacancy effects such as grown-in defects by low temperature MBE, are discussed. Lastly, progress in assessing the role of vacancies and interstitials in the diffusion of boron is reviewed, which is dominated by interstitials in silicon-rich alloys, but appears to change to domination by vacancies at around 40 percent germanium, although studies in pure germanium are greatly needed.



ChemPhysChem ◽  
2004 ◽  
Vol 5 (12) ◽  
pp. 1885-1891 ◽  
Author(s):  
Hua-Jin Zhai ◽  
Aleksey E. Kuznetsov ◽  
Alexander I. Boldyrev ◽  
Lai-Sheng Wang
Keyword(s):  


1996 ◽  
Vol 03 (01) ◽  
pp. 807-811 ◽  
Author(s):  
M. EHBRECHT ◽  
H. FERKEL ◽  
V.V. SMIRNOV ◽  
O. STELMAKH ◽  
W. ZHANG ◽  
...  

A newly developed technique is employed for the production of carbon and silicon cluster beams starting from gaseous compounds. It is based on the CO 2-laser-induced decomposition of molecular gases containing carbon and silicon, such as CO 2H2 and SiH 4, in a flow reactor. In order to decompose acetylene, SF 6 is used as a sensitizer. By introducing a skimmer into the reaction zone, the generated silicon and carbon clusters are transferred to free molecular flow and analyzed with a time-of-flight mass spectrometer. It is shown that the technique can be efficiently employed to produce fullerenes C 60 and C 70 and, in the case of silicon, ultrapure nanosized particles of up to 3-nm diameter.



1988 ◽  
Vol 34 (S22) ◽  
pp. 297-308 ◽  
Author(s):  
R. Broer ◽  
G. Aissing ◽  
W. C. Nieuwpoort
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document